
1

October 10, 2024

Introduction to Distributed
Computing

22

Objectives
By the end of this workshop, you will be able to:

● Understand distributed computing, different forms of
communication between computers, and how to
determine when distributed computing could be helpful
for your research

● Use array jobs for hyperparameter sweeps, an example of
embarrassingly parallel processes

● Use Distributed Data Parallel (DDP) when training
multi-layer perceptrons in PyTorch

3

Setting up conda environment

44

Agenda
The Basics

Embarrassingly Parallel Processing

Distributed Data Parallel (DDP) Processing

Beyond DDP

1

2

3

4

5

What is distributed computing?

Multiple computers or nodes working
together to solve a problem that is
either large to fit in one computer, or
takes time to process data with one
computer

6

Components of Distributed Computing

Communication
High-speed
communication
network between
nodes (e.g. infiniband
network)

Nodes
Distributed Software
A library (PyTorch)
with software-level
communication
protocols for
coordinating
distributed tasks
across nodes. (e.g.
PyTorch with NCCL
or MPI support)

7

Parallel processing within a node

GPU devices
(4 per node)

Compute Node

CPU cores (64
per node)

Single-node multi-GPU
parallel processing

8

Multi-node Distributed Computing

Compute Node

Compute Node

Multi-node distributed
computing
Communications between
GPUs on different nodes will
be slower than within GPUs
on the same node

9

GPU 1

GPU 3

GPU 2

GPU 4

75 GB/s

Node 1

GPU 1

GPU 3

GPU 2

GPU 4

75 GB/s

Inside Node (NVLINK):
Each GPU talks to other three GPUs at 75
GB/s (single direction). This sums up to
900 GB/s all GPU-GPU bidirectional
speed.

75 GB/s * 6 * 2 = 900 GB/s

50 GB/s

50 GB/s

Outside Node (InfiniBand Network NDR):
Each GPU communicates to other GPUs in
another node at 400 Gbps (50 GB/s).

Node 2

400 Gbps600 Gbps 600 Gbps

400 Gbps

75 GB/s
600 Gbps

75 G
B

/s
600 G

bps

75 GB/s
600 Gbps75

 G
B

/s
60

0
G

bp
s

10

Why use distributed computing?

● Scalability

● Resource sharing

● Speed up

11

Bottlenecks

● Memory
○ Training 70B LLM
○ Large neural data processing

● Compute (CPU/GPU)
○ Large # of hyperparameter sweeps
○ Large tensor operations (t-SNE)

● Storage (I/O)
○ Web scraping

● Network & Communication
○ Web scraping

1212

Agenda
The Basics

Embarrassingly Parallel Processing

Distributed Data Parallel (DDP) Processing

Beyond DDP

1

2

3

4

13

Embarrassingly Parallel Processing

 Core 1 Core 2 Core 3

Task 1 Task 2 Task 3
● Easy to parallelize because the problem

already consists of independent tasks

● Low or no communication required
between nodes

● High scalability

14

Embarrassingly Parallel Processing

● Data Parallelism

● Parameter Sweeps

● Statistical Simulations

Tasks are divided based on the index of the data filename or a loop structure.

Tasks are executed based on different sets of hyperparameters inputs.

Tasks are driven by different random number generator seeds or configuration.

15

SLURM Array Jobs

SLURM_ARRAY_TASK_ID

The easiest way to submit an embarrassingly parallel job on HPC

A job will be submitted for each
element in the array.

The only difference between jobs is:

16

 Job 1

Job 2

Job 3

Job 4

python my_code.py --task_id 1

python my_code.py --task_id 2

python my_code.py --task_id 3

python my_code.py --task_id 4

SLURM Array Jobs

17

 Job 1

Job 2

python my_code.py --task_id 1

python my_code.py --task_id 2

Only two jobs will run simultaneously.

SLURM Array Jobs (with limiting active jobs)

18

Array Jobs

How could we map
hyperparameter options

to task id?

1919

Agenda

1 The Basics

2 Embarrassingly Parallel Processing

3 Distributed Data Parallel
Processing

4 Beyond DDP

20

Multi-layer Perceptron

21

Coarse-grained parallelism

● Mostly independent tasks
● Occasional communication between processes
● High scalability

Time

Computation Communication

22

Distributed Data Parallel Processing

Most common approach to distributed
training in machine learning

Each GPU trains a copy of the model.
Dataset is split into different batches of
data on each GPU

https://www.anyscale.com/blog/what-is-distributed-training

23

Single GPU
MLP Training

Layer 1

Layer 2

Layer 3

GPU

1) Model gets batch of data

2) Computes forward pass

3) Computes backward
 pass (computing gradients)

4) Updates weights based
 on gradients

Timeline

L1

L2

L3

L3

L2

L1

Update
weights

24

Layer 1

Layer 2

Layer 3

GPU 0

L1

L2

L3

L3

L2

L1

Update
weights

Layer 1

Layer 2

Layer 3

GPU 1

b0 b1

L1

L2

L3

L3

L2

L1

Update
weights

At what point
should there be
communication

between the
GPUs? What

should the
communication

be?

25

Layer 1

Layer 2

Layer 3

GPU 0

L1

L2

L3

L3

L2

L1

Update
weights

Layer 1

Layer 2

Layer 3

GPU 1

b0 b1

L3 L3

L2 L2

L1 L1

Average local
gradients before

updating weights to
get global gradients

L1

L2

L3

L3

L2

L1

Update
weights

26

27

How does that communication actually
happen?

NVIDIA Collective Communication
Library (NCCL, pronounced
“NICKEL”) is used as backend in
distributed strategies for NVIDIA
GPUs

Has various NCCL collective
communication primitives

28

Layer 1

Layer 2

Layer 3

GPU 0

L1

L2

L3

L3

L2

L1

Update
weights

Layer 1

Layer 2

Layer 3

GPU 1

b0 b1

L3 L3

L2 L2

L1 L1

Sum local gradients
before updating

weights to get global
gradients

L1

L2

L3

L3

L2

L1

Update
weights

29

So how do we get this working in Pytorch
and on the cluster?

1) Add some logistics of set-up

2) Wrap model in DDP
from torch.nn.parallel import DistributedDataParallel as DDP
model = DDP(model, device_ids=[device])

3) Use DistributedSampler
from torch.utils.data.distributed import DistributedSampler
Use as argument in dataloader

30

Exercise: Try out DDP yourself

1) Look at DDP example (2.2) here:
https://github.com/KempnerInstitute/examples/tree/main/distributed-mlp

2) Increase the number of epochs to 3 and print a parameter on every epoch:
print(model.module.hidden_layer.bias).

3) Run & look at outputs. Do they make sense?

4) Edit the scripts to run on 4 GPUs total, 2 each on 2 nodes. Run and look at
outputs. Do the ranks and device ids make sense?

https://github.com/KempnerInstitute/examples/tree/main/distributed-mlp

3131

Agenda

1 The Basics

2 Embarrassingly Parallel Processing

3 Distributed Data Parallel
Processing

4 Beyond DDP

32

Coarse vs fine-grained parallelism

● Highly dependent tasks
● Frequent communication

between processes
● Scalability limited by

communication overhead

● Mostly independent tasks
● Occasional communication

between processes
● High scalability

Coarse-grained Fine-grained

Time

Communication

Computation
Time

33

Model Parallelism

https://www.anyscale.com/blog/what-is-distributed-training

34

Other NCCL Collective Primitives

Scatter: From one rank
data will be distributed

across ranks.

Gather: One rank will
receive the aggregation
of data from all ranks.

All-Gather: Each rank
receives the aggregation
of data from all ranks in
the order of the ranks.

35

Other NCCL Collective Primitives

Reduce: One rank
receives the reduction of

input values across
ranks.

All-Reduce: Each rank
receives the reduction of

input values across
ranks.

Reduce-Scatter: Input
values are reduced

across ranks, with each
rank receiving a subpart

of the result.

36

Thank you

