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Introduction to Distributed 
Computing
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Objectives
By the end of this workshop, you will be able to:

● Understand distributed computing, different forms of 
communication between computers, and how to 
determine when distributed computing could be helpful 
for your research

● Use array jobs for hyperparameter sweeps, an example of 
embarrassingly parallel processes

● Use Distributed Data Parallel (DDP) when training 
multi-layer perceptrons in PyTorch
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Setting up conda environment
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What is distributed computing?

Multiple computers or nodes working 
together to solve a problem that is 
either large to fit in one computer, or 
takes time to process data with one 
computer
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Components of Distributed Computing

Communication
High-speed 
communication 
network between 
nodes (e.g. infiniband 
network)

Nodes 
Distributed Software
A library (PyTorch) 
with software-level 
communication 
protocols for 
coordinating 
distributed tasks 
across nodes. (e.g. 
PyTorch with NCCL 
or MPI support)
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Parallel processing within a node

GPU devices 
(4 per node)

Compute Node

CPU cores (64 
per node)

Single-node multi-GPU 
parallel processing
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Multi-node Distributed Computing

Compute Node

Compute Node

Multi-node distributed 
computing 
Communications between 
GPUs on different nodes will 
be slower than within GPUs 
on the same node
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GPU 1

GPU 3

GPU 2

GPU 4

75 GB/s

Node 1

GPU 1

GPU 3

GPU 2

GPU 4

75 GB/s

Inside Node (NVLINK): 
Each GPU talks to other three GPUs at 75 
GB/s (single direction). This sums up to 
900 GB/s all GPU-GPU bidirectional 
speed.

75 GB/s * 6 * 2 = 900 GB/s

50 GB/s

50 GB/s

Outside Node (InfiniBand Network NDR): 
Each GPU communicates to other GPUs in 
another node at 400 Gbps (50 GB/s).

Node 2
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Why use distributed computing?

● Scalability

● Resource sharing

● Speed up
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Bottlenecks

● Memory
○ Training 70B LLM
○ Large neural data processing

● Compute (CPU/GPU)
○ Large # of hyperparameter sweeps
○ Large tensor operations (t-SNE)

● Storage (I/O)
○ Web scraping

● Network & Communication
○ Web scraping
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Embarrassingly Parallel Processing

 Core 1 Core 2 Core 3

Task 1 Task 2 Task 3
● Easy to parallelize because the problem 

already consists of independent tasks 

● Low or no communication required 
between nodes

● High scalability
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Embarrassingly Parallel Processing

● Data Parallelism

● Parameter Sweeps

● Statistical Simulations

Tasks are divided based on the index of the data filename or a loop structure.

Tasks are executed based on different sets of hyperparameters inputs.

Tasks are driven by different random number generator seeds or configuration.
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SLURM Array Jobs

SLURM_ARRAY_TASK_ID

The easiest way to submit an embarrassingly parallel job on HPC

A job will be submitted for each 
element in the array.

The only difference between jobs is:
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 Job 1

Job 2

Job 3

Job 4

python my_code.py --task_id 1

python my_code.py --task_id 2

python my_code.py --task_id 3

python my_code.py --task_id 4

SLURM Array Jobs
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 Job 1

Job 2

python my_code.py --task_id 1

python my_code.py --task_id 2

Only two jobs will run simultaneously. 

SLURM Array Jobs (with limiting active jobs)
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Array Jobs

How could we map 
hyperparameter options 

to task id?
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Multi-layer Perceptron
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Coarse-grained parallelism

● Mostly independent tasks 
● Occasional communication between processes
● High scalability

Time

Computation Communication
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Distributed Data Parallel Processing

Most common approach to distributed 
training in machine learning

Each GPU trains a copy of the model. 
Dataset is split into different batches of 
data on each GPU

https://www.anyscale.com/blog/what-is-distributed-training
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Single GPU 
MLP Training

Layer 1

Layer 2

Layer 3

GPU 

1) Model gets batch of data

2)  Computes forward pass

3)  Computes backward 
     pass (computing gradients)

4)  Updates weights based 
 on gradients

Timeline

L1

L2

L3

L3

L2

L1

Update 
weights
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Layer 1

Layer 2

Layer 3

GPU 0 

L1

L2

L3

L3

L2

L1

Update 
weights

Layer 1

Layer 2

Layer 3

GPU 1

b0 b1

L1

L2

L3

L3

L2

L1

Update 
weights

At what point 
should there be 
communication 

between the 
GPUs? What 

should the 
communication 

be?
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Layer 1

Layer 2

Layer 3

GPU 0 

L1

L2

L3

L3

L2

L1

Update 
weights

Layer 1

Layer 2

Layer 3

GPU 1

b0 b1

L3 L3

L2 L2

L1 L1

Average local 
gradients before 

updating weights to 
get global gradients 

L1

L2

L3

L3

L2

L1

Update 
weights
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How does that communication actually 
happen?

NVIDIA Collective Communication 
Library (NCCL, pronounced 
“NICKEL”) is used as backend in 
distributed strategies for NVIDIA 
GPUs

Has various NCCL collective 
communication primitives
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Layer 1

Layer 2

Layer 3

GPU 0 

L1

L2

L3

L3

L2

L1

Update 
weights

Layer 1

Layer 2

Layer 3

GPU 1

b0 b1

L3 L3

L2 L2

L1 L1

Sum local gradients 
before updating 

weights to get global 
gradients 

L1

L2

L3

L3

L2

L1

Update 
weights
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So how do we get this working in Pytorch 
and on the cluster?

1) Add some logistics of set-up

2) Wrap model in DDP 
from torch.nn.parallel import DistributedDataParallel as DDP
model = DDP(model, device_ids=[device])

3) Use DistributedSampler
from torch.utils.data.distributed import DistributedSampler
Use as argument in dataloader
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Exercise: Try out DDP yourself

1) Look at DDP example (2.2) here: 
https://github.com/KempnerInstitute/examples/tree/main/distributed-mlp

2) Increase the number of epochs to 3 and print a parameter on every epoch: 
print(model.module.hidden_layer.bias). 

3) Run & look at outputs. Do they make sense?

4) Edit the scripts to run on 4 GPUs total, 2 each on 2 nodes. Run and look at 
outputs. Do the ranks and device ids make sense?

https://github.com/KempnerInstitute/examples/tree/main/distributed-mlp
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Coarse vs fine-grained parallelism

● Highly dependent tasks 
● Frequent communication 

between processes
● Scalability limited by 

communication overhead

● Mostly independent tasks 
● Occasional communication 

between processes
● High scalability

Coarse-grained Fine-grained

Time

Communication

Computation
Time
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Model Parallelism

https://www.anyscale.com/blog/what-is-distributed-training
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Other NCCL Collective Primitives

Scatter: From one rank 
data will be distributed 

across ranks.

Gather: One rank will 
receive the aggregation 
of data from all ranks.

All-Gather: Each rank 
receives the aggregation 
of data from all ranks in 
the order of the ranks.



35

Other NCCL Collective Primitives

Reduce: One rank 
receives the reduction of 

input values across 
ranks.

All-Reduce: Each rank 
receives the reduction of 

input values across 
ranks.

Reduce-Scatter: Input 
values are reduced 

across ranks, with each 
rank receiving a subpart 

of the result.
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Thank you


