vty HARVARD
@ !N(S?Tmpner UNIVERSITY

Introduction to Distributed
Computing

October 10, 2024

Objectives

By the end of this workshop, you will be able to:

Understand distributed computing, different forms of
communication between computers, and how to
determine when distributed computing could be helpful
for your research

Use array jobs for hyperparameter sweeps, an example of
embarrassingly parallel processes

Use Distributed Data Parallel (DDP) when training
multi-layer perceptrons in PyTorch

103
@ Kempner | #® HARVARD 2

TTTTTTTTT

Setting up conda environment

1.1. Create conda environment

Creating the conda envireonment named dist_computing (one can use their own customized name).

conda create -n dist_computing python=3.10 >
1.2. Installing PyTorch
Activating the conda environment and install PyTorch: i

conda activate dist_computing
pip3 install torch

@ Kempner ‘ & HARVARD 3

INSTITUTE UNIVERSITY

1 The Basics

2 Embarrassingly Parallel Processing

3 Distributed Data Parallel (DDP) Processing

4 Beyond DDP

103
7)) Kempner | GG HARVARD 4

What is distributed computing?

Multiple computers or nodes working ﬂ |] ‘\){]
together to solve a problem that is o '

either large to fit in one computer, or —>
takes time to process data with one f
computer

FT
@ Kempner 5 H&%}E{QED S

TTTTTTTTT

Components of Distributed Computing

Nodes

B8

—>

Communication

network between

communication (

—L
High-speed ?@ \
| N

nodes (e.g. infiniband o .

network)

(

%

Distributed Software
A library (PyTorch)
with software-level
communication
protocols for
coordinating
distributed tasks
across nodes. (e.g.
PyTorch with NCCL
or MPI support)

TTTTTTTTT

6

Parallel processing within a node

Compute Node
CIOOCEEE e

/ CPU cores (64

GPU devices per node)
(4 per node)

Multi-node Distributed Computing

Multi-node distributed

computing
Compute Node Communications between
[} [} [} [} C) GPUs on different nodes will
10)] be slower than within GPUs

on the same node

Compute Node

=298

Node 1 Node 2

75 GB/s 50 GB/s
600 Gbps 400 Gbps

Y

75 GB/s
600 Gbps

Inside Node (NVLINK):

Each GPU talks to other three GPUs at 75
GB/s (single direction). This sums up to
900 GB/s all GPU-GPU bidirectional
speed.

75 GB/s*6*2 =900 GB/s

Outside Node (InfiniBand Network NDR):
Each GPU communicates to other GPUs in
another node at 400 Gbps (50 GB/s).

v HARVARD
8 UNIVERSITY

9

Why use distributed computing?

e Scalability
e Resource sharing

e Speed up

Bottlenecks

e Memory
o Training 70B LLM
o Large neural data processing
e Compute (CPU/GPU)
o Large # of hyperparameter sweeps
o Large tensor operations (t-SNE)
e Storage (I/O)
o Web scraping
e Network & Communication
o Web scraping

HARVARD 11
2 UNIVERSITY

1 The Basics

2 Embarrassingly Parallel Processing

3 Distributed Data Parallel (DDP) Processing

4 Beyond DDP

103
7)) Kempner | G HARVARD 12

Embarrassingly Parallel Processing

e Easy to parallelize because the problem
already consists of independent tasks Task 1 Task 2 Task 3

e Low or no communication required l l l
between nodes

Core1|| Core 2 || Core 3

e High scalability l l l

Embarrassingly Parallel Processing

e Data Parallelism

Tasks are divided based on the index of the data filename or a loop structure.

e Parameter Sweeps

Tasks are executed based on different sets of hyperparameters inputs.

e Statistical Simulations

Tasks are driven by different random number generator seeds or configuration.

03 £
§ HARARD 14

SLURM Array Jobs

The easiest way to submit an embarrassingly parallel job on HPC

A job will be submitted for each
element in the array.

The only difference between jobs is:

SLURM_ARRAY TASK_ID

module load python

python hyperparameter_tuning.py

03 £
JHREEE

SLURM Array Jobs

Job 1 python my code.py —--task id 1

Job 2 python my code.py —--task id 2

Job 3 | python my code.py --task_id 3

module load python
Job 4 |python my code.py --task_id 4

python hyperparameter_tuning.py —-task_id $SLURM_ARRAY_TASK_ID

mﬁgﬂl HARVARD 1 6

UNIVERSITY

@ IIN(STeITrU\T'!pner

SLURM Array Jobs (with limiting active jobs)

Job 1 python my code.py --task id 1

JOb 2 python my code.py —--task id 2

module load python

Only two jobs will run simultaneously.
python hyperparameter_tuning.py ask_id $SLURM_ARRAY_TASK_ID

[[nkhoshnevisPholylogin@®l array-jobl$ squeue -u nkhoshnevis
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
50590187_[3-12%2] kempner_r job-arra nkhoshne PD 0:00 1 (JobArrayTaskLimit)

50590187_1 kempner_r job-arra nkhoshne R 0:24 1 holygpu8al9606
50590187_2 kempner_r job—arra“nkhoshne R 0:24 1 holygpu8al9606

OKem pner | @ HARVARD 17
INSTITUTE UNIVERSITY

Array Jobs

module load python

python hyperparameter_tuning.py ——task_id $SLURM_ARRAY_TASK_ID

-

hyperparameter options

_

How could we map

to task id?

~N

J

vl HARVARD
2 UNIVERSITY

18

1 The Basics

2 Embarrassingly Parallel Processing

3 Distributed Data Parallel

Processing

4 Beyond DDP

103
7/ Kempner | G HARVARD 19

TTTTTTTTT

Multi-layer Perceptron

def __init_ (self, in_feature, hidden_units, out_feature):

‘ super().__init_ ()
’\4‘(“‘) self.output_layer
LK)
q

X2
‘ ’1;5 \‘ def forward(self, x):

x = self.hidden_layer(x)

S \)
4 'S i,
@

Input Layer Hidden Layer Output Layer

class MLP(nn.Module):

nn.Linear(in_feature, hidden_units)

nn.Linear(hidden_units, out_feature)

self.output_layer(x)

vl HARVARD
@ IIN(STelepner ‘ S UNIVERSITY 20

Coarse-grained parallelism

e Mostly independent tasks
e (QOccasional communication between processes
e High scalability

|

» [Ime

Distributed Data Parallel Processing

Most common approach to distributed
training in machine learning

it ([et f i Each GPU trains a copy of the model.
Dataset is split into different batches of
data on each GPU

Shared model

https://www.anyscale.com/blog/what-is-distributed-training

103 160
7) Kemener | G HARVARD 22

TTTTTTTTT

Single GPU

MLP Training

1) Model gets batch of data

2) Computes forward pass

3) Computes backward
pass (computing gradients)

4) based
on gradients

1osele(]

t 1 GPUY
{ Layer 1 }
v #
{ Layer 2
v ¢

Timeline

\J

Update
weights

-

23

Update
weights

-

AN
19Se1e(]

/At what point\

should there be

communication
between the
GPUs”? What

should the
communication
be?

= J

Update
weights

> |

EtN

Layer 1 J

v 1

Layer 2 }

v ¢

-

Layer 3

|

=

GPU 1

<l _)

b b | b. 1
e))

L1 - & L1
@ () & oI

L2) o L2 L 1

ayer

— Average local — 4

L3 gradients before L3
—— updating weightsto = * f

L3 get global gradients L3
p— J— Layer 2

2 (5 [()pe
u e |
L1 { Layer 3 }
Update Llpeki \ /
weights weights) GPU 1

Forward Pass 3ackward Pass Update Model

Xi(o)= Ex1 X2 X3X4Xs xsj

—_— Local Gradients Global Gradients

|
|
| = (W,.grad” + W,.gradV)/2 ' W, =W, -a.W,.grad

| Wz.grad‘°’= (yv(o) - y(0)) . h©@r . 3
(b,.grad®™ +b,.grad"’)/2 b,= b,-a. b;.grad

h©@ = x(0 * W, + b1 ‘ bz.grad‘°) - (yv(o) _ y(O))

/ f X \ y|(o) =h© * W, +b, ! Wl.grad‘°’ = [(y-(o) i y(0)) W] . xOr = (Wl.grad‘°’ + Wl.grad‘”) /2 W, =W, -a.W,.grad
L § ' bograd® = 3-y).W, > (b,.grad” +b,.grad®)2 ' b,=b,-a. b,.grad
v X GPU T ol I B
A X (1) i o
X . Wgrad®= (y®.y®) pWr = (W,.grad” + W,.grad®”)/2 = W, =W, -a.W,.grad
i vX) h®=xO*W, +b, | b,.grad® = (y©-y®) (b,.grad® +b,.grad®™)/2 | b =b,-a. b,.grad

= (W,.grad” + W .gradV)/2 ' W,=W,-a.W,.grad

yl(l) =h® * W, + b2 : Wl.grad“’= [(y-(l) ; y(l)) . Wz] Cx(Dr . 8
(b,.grad” +b,.grad®)/2 | b,=b,-a. b,.grad

| b.grad® = (y®¥-y®). W,
_________________ —h :
|

Xj(= Exl X2 X3X4Xs xs]

103
7)) Kempner | G HARVARD 26

How does that communication actually

?
happen ° All-Reduce

Rank0 ' Rankl ' Rank2 ' Rank3
NVIDIA Collective Communication Gy [Gy |Gy [Gor i Gy | G, | CTRRGE

Library (NCCL, pronounced
“‘NICKEL") is used as backend in

Gao | Gao || a1 | Gax [} Gsz | Gez || Gas | Gag

distributed strategies for NVIDIA | G, — 23:0 G
GPUs - e N,

Rank0 | Rankl | Rank2 | Rank3
CHGCR GRCER CRERICHRE,

Has various NCCL collective
communication primitives

CAGRIGRGCHIGRGR GREG,

10 0
HARARD 27

- [_ Ly)
b b | P 1
T QO)
L1 Y L1
D () .
L2 | o L2 L 1
ayer
—— Sum local gradients = 4
L3 before updating L3
- weights to get global = * ?
L3 gradients L3
p— J— Layer 2
L2 { L3] [L3 } L2
o ey | —H
L1 { Layer 3
U Update \
pdate .
weights weights) GPU 1

So how do we get this working in Pytorch
and on the cluster?

1) Add some logistics of set-up

2) Wrap model in DDP

from torch.nn.parallel import DistributedDataParallel as DDP
model = DDP(model, device ids=[device])

3) Use DistributedSampler

from torch.uftils.data.distributed import DistributedSampler
Use as argument in dataloader

7)) Kempner | G HARVARD 29

Exercise: Try out DDP yourselt

1) Look at DDP example (2.2) here:
https://qithub.com/Kempnerinstitute/examples/tree/main/distributed-mip

2) Increase the number of epochs to 3 and print a parameter on every epoch:
print(model.module.hidden_layer.bias).

3) Run & look at outputs. Do they make sense?

4) Edit the scripts to run on 4 GPUs total, 2 each on 2 nodes. Run and look at
outputs. Do the ranks and device ids make sense?

77) Kempner | § HARVARD 30

TTTTTTTTT

https://github.com/KempnerInstitute/examples/tree/main/distributed-mlp

1 The Basics

2 Embarrassingly Parallel Processing

3 Distributed Data Parallel

Processing

4 Beyond DDP

103 160
77 Kemprer | G HaRvARD 31

TTTTTTTTT

Coarse vs fine-grained parallelism

Coarse-grained Fine-grained
Mostly independent tasks e Highly dependent tasks
Occasional communication e Frequent communication
between processes between processes
High scalability e Scalability limited by

communication overhead

11 I I | BUBBLENENRNE0R0eEREROa0RE

Time Time

a8

7)) Kempner | § HARVARD 3D

Model Parallelism

Data parallelism Model parallelism

Worker Worker Worker Worker Worker Worker

Shared model Partitioned model

https://www.anyscale.com/blog/what-is-distributed-training

ﬂ?n :]:[m HARVARD 3 3

UNIVERSITY

Other NCCL Collective Primitives

Scatter (on rank 1)

Rank 0 : Rank1 : Rank 2 : Rank 3

W, | W, |

Gather (on rank 1)

Rank0 ' Rankl ' Rank2 ' Rank3

W,

W,

All-Gather
Rank 0 : Rank 1 : Rank 2 : Rank 3
W, : Wz i i
i3]
< ' ' '
Rank0 | Rankl | Rank2 | Rank3

Scatter: From one rank
data will be distributed
across ranks.

Rank0 ' Rankl | Rank2 ' Rank3
W, i W, | :
i W, E W4
'
Rank 0 : Rank1 : Rank 2 : Rank 3
| W, | W, |
W5 | W, |

W, | W, || W, | W, || W, | W, ||| W, | W,

Gather: One rank will
receive the aggregation
of data from all ranks.

Wi | W |i| Wy | W [} Wy | W [} W, [W,

All-Gather: Each rank
receives the aggregation
of data from all ranks in

the order of the ranks.

@Eﬁgﬂ HARVARD 34

UNIVERSITY

Other NCCL Collective Primitives

Reduce (on rank 1)

Rank0 ' Rankl ' Rank2 ' Rank3

Reduce-Scatter

Rankl ' Rank2 |

Gio [Gool IGRIIGHN | G, | G.. | IR

Gy Gy | G Gy, | Gy

3
£

Guo ||| Gax | Gy || Gz | Gaz || Gas | Gas

Gao [Gao | IGINGIN: G, | G, || IEHE.

Gi = Z?:o Gij

—

Rank 0 : Rankl | Rank2 : Rank 3

Rank 0

Gi = Z?:o Gij

- N
Rank 1 Rank 2 Rank 3

1 G, G,

| G, | G, |

G,

| I
G, |

1 I

Reduce: One rank
receives the reduction of
input values across
ranks.

All-Reduce
Rank 0 : Rank 1 : Rank 2 : Rank 3
Gio | Gy [Guy [Goy [| Gy, | Gy, |G [Gis
Gao | Gyo [} Ga1 | Gay [} s, | Ga, ||| Gas [Gas

Gi:Z?zoaij

/.//7&\\.\;

Rank0 | Rankl | Rank2 | Rank3
CHGH GRGRIGREGR GHRE,
GHAGR GRGRIGREGRIGHE,

All-Reduce: Each rank
receives the reduction of
iInput values across
ranks.

i | G, | &

I I
1 1 |

Reduce-Scatter: Input
values are reduced
across ranks, with each
rank receiving a subpart
of the result.

77) Kempner | @G HARVARD 35

INSTITUTE

UNIVERSITY

@ Kempner @ HARVARD

Thank you

