



# Introduction to Distributed Computing

October 10, 2024

# Objectives

By the end of this workshop, you will be able to:

- Understand distributed computing, different forms of communication between computers, and how to determine when distributed computing could be helpful for your research
- Use array jobs for hyperparameter sweeps, an example of embarrassingly parallel processes
- Use Distributed Data Parallel (DDP) when training multi-layer perceptrons in PyTorch



# Setting up conda environment

### 1.1. Create conda environment

Creating the conda envireonment named dist\_computing (one can use their own customized name).

conda create -n dist\_computing python=3.10

### 1.2. Installing PyTorch

# Activating the conda environment and install PyTorch: conda activate dist\_computing pip3 install torch



٢Ç

٢Ū

# Agenda



The Basics

2 **Embarrassingly Parallel Processing** 

Distributed Data Parallel (DDP) Processing



3



4

133: ICO 1235:

## What is distributed computing?

Multiple computers or nodes working together to solve a problem that is either large to fit in one computer, or takes time to process data with one computer





HARVARD

# **Components of Distributed Computing**

### Nodes

Communication High-speed communication network between nodes (e.g. infiniband network)



**Distributed Software** A library (PyTorch) with software-level communication protocols for coordinating distributed tasks across nodes. (e.g. **PyTorch with NCCL** or MPI support)



HARVARD

### Parallel processing within a node





7

# Multi-node Distributed Computing





HARVARD



### Inside Node (**NVLINK**):

Each GPU talks to other three GPUs at 75 GB/s (single direction). This sums up to 900 GB/s all GPU-GPU bidirectional speed.

Outside Node (InfiniBand Network NDR): Each GPU communicates to other GPUs in another node at 400 Gbps (50 GB/s).





# Why use distributed computing?

- Scalability
- Resource sharing
- Speed up



### Bottlenecks

### Memory

- Training 70B LLM
- Large neural data processing
- Compute (CPU/GPU)
  - Large # of hyperparameter sweeps
  - Large tensor operations (t-SNE)
- Storage (I/O)
  - Web scraping
- Network & Communication
  - Web scraping



# Agenda



2 Embarrassingly Parallel Processing

3 Distributed Data Parallel (DDP) Processing





# **Embarrassingly Parallel Processing**

- Easy to parallelize because the problem already consists of **independent tasks**
- Low or no communication required between nodes
- High scalability





# **Embarrassingly Parallel Processing**

### • Data Parallelism

Tasks are divided based on the index of the data filename or a loop structure.

### • Parameter Sweeps

Tasks are executed based on different sets of hyperparameters inputs.

### Statistical Simulations

Tasks are driven by different random number generator seeds or configuration.



### SLURM Array Jobs

The easiest way to submit an embarrassingly parallel job on HPC

#! /bin/bash #SBATCH ---job-name=job-array #SBATCH ---partition=kempner\_requeue #SBATCH ---account=kempner\_dev #SBATCH ---nodes=1 #SBATCH ---nodes=1 #SBATCH ---ntasks-per-node=1 #SBATCH ---gpus-per-task=1 #SBATCH --cpus-per-task=1 #SBATCH ---mem=4GB #SBATCH ---time=15:00 #SBATCH ---array=1-4 #SBATCH ---output=%A\_%a.out

module load python

A job will be submitted for each element in the array.

### The only difference between jobs is:

SLURM\_ARRAY\_TASK\_ID

python hyperparameter\_tuning.py --task\_id \$SLURM\_ARRAY\_TASK\_ID



### SLURM Array Jobs





### SLURM Array Jobs (with limiting active jobs)



| [nkhoshnevis@holy1 | ogin01 arra | ay-job]\$ : | squeue -u | nkho | shnevis |       |                     |
|--------------------|-------------|-------------|-----------|------|---------|-------|---------------------|
| JOBID              | PARTITION   | NAME        | USER      | ST   | TIME    | NODES | NODELIST(REASON)    |
| 50590187_[3-12%2]  | kempner_r   | job-arra    | nkhoshne  | PD   | 0:00    | 1     | (JobArrayTaskLimit) |
| 50590187_1         | kempner_r   | job-arra    | nkhoshne  | R    | 0:24    | 1     | holygpu8a19606      |
| 50590187_2         | kempner_r   | job-arra    | nkhoshne  | R    | 0:24    | 1     | holygpu8a19606      |





# Array Jobs

### #! /bin/bash

#SBATCH --job-name=job-array #SBATCH --account= kempner\_undergrads #SBATCH --output=%A\_%a.out #SBATCH ---nodes=1 #SBATCH --ntasks-per-node=1 #SBATCH --gpus-per-node=1 #SBATCH --cpus-per-task=1 #SBATCH --time=10:00 **#SBATCH** --mem=4GB #SBATCH --partition=kempner\_requeue #SBATCH --array=1-4

### module load python

python hyperparameter\_tuning.py --task\_id \$SLURM\_ARRAY\_TASK\_ID

How could we map hyperparameter options to task id?



UNIVERSITY

# Agenda

### The Basics

2 Embarrassingly Parallel Processing

3 Distributed Data Parallel Processing

4 Beyond DDP



HARVARD UNIVERSITY

NE: RI 1tas

### Multi-layer Perceptron



class MLP(nn.Module):

def \_\_init\_\_(self, in\_feature, hidden\_units, out\_feature): super().\_\_init\_\_()

self.hidden\_layer = nn.Linear(in\_feature, hidden\_units) self.output\_layer = nn.Linear(hidden\_units, out\_feature)

def forward(self, x):  $x = self.hidden_layer(x)$ x = self.output\_layer(x) return x



NE RI

UNIVERSITY

# Coarse-grained parallelism

- Mostly independent tasks
- Occasional communication between processes
- High scalability





# **Distributed Data Parallel Processing**



Most common approach to distributed training in machine learning

Each GPU trains a copy of the model. Dataset is split into different batches of data on each GPU

Shared model

https://www.anyscale.com/blog/what-is-distributed-training



### Single GPU **MLP** Training

Model gets batch of data

batch

- 2) Computes forward pass
- 3) Computes backward pass (computing gradients)
- 4) Updates weights based on gradients





**L1** 

**L2** 

**L3** 

**L3** 

L2

L1











NE RI TAS

# How does that communication actually happen?

NVIDIA Collective Communication Library (NCCL, pronounced "NICKEL") is used as backend in distributed strategies for NVIDIA GPUs

Has various NCCL collective communication primitives









So how do we get this working in Pytorch and on the cluster?

1) Add some logistics of set-up

2) Wrap model in DDP from torch.nn.parallel import DistributedDataParallel as DDP model = DDP(model, device\_ids=[device])

3) Use DistributedSampler from torch.utils.data.distributed import DistributedSampler Use as argument in dataloader



# Exercise: Try out DDP yourself

1) Look at DDP example (2.2) here:

https://github.com/KempnerInstitute/examples/tree/main/distributed-mlp

2) Increase the number of epochs to 3 and print a parameter on every epoch: print(model.module.hidden\_layer.bias).

3) Run & look at outputs. Do they make sense?

4) Edit the scripts to run on 4 GPUs total, 2 each on 2 nodes. Run and look at outputs. Do the ranks and device ids make sense?



# Agenda

The Basics

2 Embarrassingly Parallel Processing

3 Distributed Data Parallel Processing

4 Beyond DDP



# Coarse vs fine-grained parallelism

| Coarse-grained                                                                                                                 | Fine-grained                                                                                                                                                |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| <ul> <li>Mostly independent tasks</li> <li>Occasional communication<br/>between processes</li> <li>High scalability</li> </ul> | <ul> <li>Highly dependent tasks</li> <li>Frequent communication<br/>between processes</li> <li>Scalability limited by<br/>communication overhead</li> </ul> |  |  |  |  |
| Time                                                                                                                           | Time                                                                                                                                                        |  |  |  |  |
| Communication                                                                                                                  |                                                                                                                                                             |  |  |  |  |



### Model Parallelism

### Data parallelism



https://www.anyscale.com/blog/what-is-distributed-training

### **Model parallelism**



### **Other NCCL Collective Primitives**



Scatter: From one rank data will be distributed across ranks.



Gather: One rank will receive the aggregation of data from all ranks.

### All-Gather



All-Gather: Each rank receives the aggregation of data from all ranks in the order of the ranks.



HARVARD

### **Other NCCL Collective Primitives**



Reduce: One rank receives the reduction of input values across ranks.



All-Reduce: Each rank receives the reduction of input values across ranks.



Reduce-Scatter: Input values are reduced across ranks, with each rank receiving a subpart of the result.



HARVARD

UNIVERSITY





Thank you