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Objectives
By the end of this workshop, you will be able to:

● Explain the basics of distributed computing for large language model 
inference

● Use vLLM, a popular for LLM inference, to host a server
● Prompt and extract logits from a large Llama model on an HPC cluster
● Use offline batch inference with a large Llama model
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Agenda

1 Basics of distributed inference for 
LLMs

2 Using vLLM for Online Inference
Setting up an LLM server
Using the LLM server for
inference

3 Using vLLM for Offline Inference



4

Llama Models
• Family of decoder-only transformer 

large language models 

• Trained model weights released by 
Meta AI starting in February 2023 

• Latest generation released in July 
2024

• Llama 3 models with 8B, 70B, 
or 405B parameters

Input tokens
“Have you read”

Embeddings

Output layers

Output tokens
“Have you read that”

x n_layers
Decoder block

Self-attention

Feedforward network
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Training vs Inference in Llama models

Input tokens
“Have you read”

Embeddings

Output layers

Output tokens
“Have you read that”

x n_layers
Decoder block

Self-attention

Feedforward network

Training

Process of learning 
model weights by 
optimizing 
performance on tasks 
such as next-token 
prediction.

Inference

Process of using 
trained model weights 
to provide outputs 
based on given input 
prompts.
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Exercise: Assessing Memory Needs

1) Compute the memory that the model weights of the 
Llama model with 405 billion weights will take. 
Assume weights are float16. 

2) Will this fit on one GPU? If not, how many H100 
GPUs would you need? 

GPUs:

H100 ⇒ 80 G
A100 ⇒ 40 G
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Large Memory Needs for Large Models

Model Size Float16 Float8 INT4

8B 16 GB 8 GB 4 GB

70B 140 GB 70 GB 35 GB

405B 810 GB 405 GB 203 GB

Adapted from https://huggingface.co/blog/llama31

Memory Needed for Model Weights 

https://huggingface.co/blog/llama31
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KV Caching
• Storing key and values for previous tokens to speed up inference
• Used in decoder architectures when generating multiple tokens
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Self-Attention 

Query Token 2

K
ey Token 2

Q1,K1

Adapted from https://medium.com/@joaolages/kv-caching-explained-276520203249

Q1,K2

Q2,K1 Q2,K2

Query Token 3

K
ey Token 3

Q1,K3

Q2,K3

Q3,K1 Q3,K2 Q3,K3

Query Token 1

K
ey Token 1

x =

Value Token 1

Value Token 2

Value Token 3

Attention Token 1

Attention Token 2

Attention Token 3

=x

We keep re-computing earlier key and value tokens!

https://medium.com/@joaolages/kv-caching-explained-276520203249
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Self-Attention with KV-Caching 

Q1,K1

Adapted from https://medium.com/@joaolages/kv-caching-explained-276520203249

Query Token 1

K
ey Token 1

x =

Value Token 1 Attention Token 1

=x

Cached values

https://medium.com/@joaolages/kv-caching-explained-276520203249
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Self-Attention with KV-Caching 

Query Token 2

K
ey Token 2

Adapted from https://medium.com/@joaolages/kv-caching-explained-276520203249

Q2,K1 Q2,K2

K
ey Token 1

x =

Value Token 1

Value Token 2 Attention Token 2=x

Cached values

https://medium.com/@joaolages/kv-caching-explained-276520203249


12

Self-Attention with KV-Caching 

K
ey Token 2

Adapted from https://medium.com/@joaolages/kv-caching-explained-276520203249

Query Token 3

K
ey Token 3

Q3,K1 Q3,K2 Q3,K3

K
ey Token 1

x =

Value Token 1

Value Token 2

Value Token 3 Attention Token 3

=x

Cached values

https://medium.com/@joaolages/kv-caching-explained-276520203249
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KV Caching
• Storing key and values for previous tokens to speed up inference
• Used in decoder architectures when generating multiple tokens

• Pro: small matrices = faster matrix multiplication = faster 
inference

• Con: need more GPU memory to cache key and value states
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Large Memory Needs for Large Models

Adapted from https://huggingface.co/blog/llama31

Model Size Memory for Float16 
Weights

Memory for KV 
Cache for 128k 
token request

Number of H100s 
needed for both

8B 16 GB 15.62 GB 1

70B 140 GB 39.06 GB 2.24 

405B 810 GB 123.05 GB 11.66 

https://huggingface.co/blog/llama31
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GPU 0

GPU 2

GPU 1

GPU 3

75 GB/s
GPU 0

GPU 2

GPU 1

GPU 3

75 GB/s

Inside Node (NVLINK):  Each GPU talks to other three GPUs at 75 GB/s (single direction). This sums up to 900 GB/s all 
GPU-GPU bidirectional speed. 75 GB/s * 6 * 2 = 900 GB/s

50 GB/s

50 GB/s
Outside Node (InfiniBand Network NDR): Each GPU communicates to other GPUs in another node at 400 Gbps (50 GB/s).

400 Gbps600 Gbps 600 Gbps

400 Gbps

75 GB/s
600 Gbps

75 G
B

/s
600 G

bps

75 GB/s
600 Gbps75

 G
B

/s
60

0 
G

bp
s

GPU-to-GPU Communication
Node 1                                                                                     Node 2
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Large Memory Needs for Large Models

Adapted from https://huggingface.co/blog/llama31

Model Size Memory for Float16 
Weights

Memory for KV 
Cache for 128k 
token request

Number of H100s 
needed for both

8B 16 GB 15.62 GB 1

70B 140 GB 39.06 GB 2.24 

405B 810 GB 123.05 GB 11.66 

Should be on a single node

Needs multiple nodes

https://huggingface.co/blog/llama31
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Virtual Large Language Model (vLLM)

• Open source library that supports fast and efficient inference and serving of LLMs

• Has built-in support for distributed inference through tensor and pipeline parallelism
• We’ll use it with Llama models but supports many other models (will discuss this further 

later)
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Types of Parallelism

https://www.anyscale.com/blog/what-is-distributed-training
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Single-Node Multi-GPU: Tensor Parallel 
Inference

● All GPUs 
contribute in each 
layer computation

● Removes the GPU 
Idle time

https://docs.vllm.ai/en/latest/serving/distributed_serving.html
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Pipeline Parallel Inference
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Multi-Node Multi-GPU: 
Tensor Parallel & Pipeline 
Parallel Inference

Input tokens
“Have you read”

Embeddings

Output tokens
“Have you read that”

Decoder block

Self-attention

Feedforward network

Decoder block

Self-attention

Feedforward network
x n_layers

Node 1 Node 2
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vLLM Recommendations

However on our cluster, communication between nodes is fast 
enough to support only tensor parallelism with vLLM even for 

multi-node multi-GPU model hosting

Tensor parallel size = # of GPUs per node

Pipeline parallel inference size = number of nodes
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Behind the Scenes of vLLM Distributed 
Inference

• vLLM uses Megatron-LM’s tensor parallel algorithm

• Manages distributed multi-node inference scheduling using Ray:
• Ray is an open-source framework for scaling AI models

https://arxiv.org/pdf/1909.08053
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Speed of Inference

Using provided vLLM configs:
70B model:   ~50 tokens per second (early in sequence, single prompt)
405B model: ~18-20 tokens per second (early in sequence, single 

prompt)

Latency: time it takes for a single input to produce a single output

Throughput: rate of output (tokens per second)
Could be increased by parallelizing prompts rather than doing them 
one-at-a-time
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Agenda

1 Basics of distributed inference for 
LLMs

2 Using vLLM for Online Inference
Setting up an LLM server
Using the LLM server for
inference

3 Using vLLM for Offline Inference



26

 Offline/Batch Inference       Online Inference
 ● Processing large dataset all at once

● Similar to typical Pytorch 
module/inference for other types of 
models

● Asynchronous/no interactivity
● Can be optimized to maximize 

throughput (high volume of 
prompts)

Prompt 1
Prompt 2
Prompt …
Prompt 100

Inference 
Code/
Model

Output 1
Output 2
Output …
Output 100

● “Real-time” interactive inference of 
single or small batch at a time

● Similar to ChatGPT/Claude 
● Can be optimized to minimize 

latency (time for single prompt)

Prompt 1

Output 1

Server 
with Model
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vLLM Server 
● Server: computer or software program that provides services to other computers 

(called clients). Acts as a central point to fulfill requests from clients and serve 
data/applications. 

● Server endpoint: specific location/address on a network that serves as entry/exit 
point for communication

● In vLLM case, we’re going to persistently host an LLM model on multiple GPUs
● We can then send prompt requests to this server and get the outputs back. 
● This server implements OpenAI API protocol

Prompt 1

Output 1

vLLM Server 
with

Model

HTTP Request

Endpoint

HTTP Response
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Exercise: Setting up your LLM server
1) Log into the FASRC cluster

2) Clone Kempner vLLM github repo and cd in

git clone https://github.com/KempnerInstitute/distributed-inference-vllm.git

3) Find relevant SLURM script: examples/workshops/70B_slurm.sh. Update output and 
error file paths

4) Run the SLURM script. We’ll dive into what it’s doing next!

sbatch examples/workshops/70b_slurm.sh 

5) Check it’s running (sacct) (might take a few minutes to show). Look at error log 
periodically. Should eventually see something like: 
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Interacting with server

vLLM Server 
with

Model

Prompting 
code on any 
compute or 
log-in node on 
FASRC 
Cluster

HTTP Request
vLLM Server 

with
Model

Prompting 
code on head 
node of server 
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Exercise: Getting set up for inference
We’ll be working through the tutorial in the file examples/workshops/inference.ipynb

Need to set up to use this jupyter notebook on the cluster:

• Recommended: 
• Use OpenOnDemand. You do not need GPUs so use partition test, a single cpu, 

and 4 GBs of memory. No need to specify modules or environment
• If you’re familiar with VSCode remote dev:

• Option 1: Find head GPU of LLM server in your output logs. Can use this as 
compute node

• Option 2: Start a different interactive session using partition test, a single cpu, and 
4 GBs of memory

https://handbook.eng.kempnerinstitute.harvard.edu/s1_high_performance_computing/kempner_cluster/accessing_and_navigating_the_cluster.html#ondemand-access
https://handbook.eng.kempnerinstitute.harvard.edu/s1_high_performance_computing/development_and_runtime_envs/using_vscode_for_remote_development.html
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vLLM Output Format
Dictionary with these keys:

id: request id (defined by the server)

object: type of request (text_completion in our case)

created: timestamp of request

model: model id (path of the model)

choices: generated output of the model

usage: statistics about input and output tokens
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Exercise: Inference for a single prompt 
1) Fill in the IP of the node hosting the server: this is the head node ip in the output 

logs of the SLURM job.  You can use localhost if your tutorial notebook is running 
on the relevant compute node. 

2) Run the code and look at the outputs.
3) Change the max_tokens and min_tokens values and rerun the code.
4) Change the temperature value. Run the code a couple times for each 

temperature parameter you try. What do you notice about the output text when 
temperature is 0 vs higher?

5) Change the frequency_penalty value. It can take any value between [-2, 2]. Can 
you figure out what this parameter does?

6) Change the top_k value and have temperature = 1. How do the outputs change?
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Sampling Parameters
max_tokens & min_tokens denote the maximum and minimum possible tokens generated. The LLM 
might generate fewer tokens than the max

token 1

token 2

token 3

token 4

token 100k

…

log prob 1

log prob 2

log prob 3

log prob 4

log prob 100k

…

Temperature of 0 -> 
deterministic, just take top 
log prob

Otherwise, divide log probs 
by temperature before 
sampling. Higher 
temperature squishes 
probabilities together so 
more random tokens 
generated

top_k: only consider top k 
log probability tokens when 
samping

frequency_penalty: 
penalizes repetition of 
tokens within generation
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vLLM Output (Choices)

index: the index in the choices array

text: generated text

finish_reason: why the generation stopped

stop_reason: we do not use this, related to another vLLM sampling parameter

logprobs: (requires parameter) log probabilities of each token in the generated output

prompt_logprobs: (requires parameter) log probabilities of each token in the prompt
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vLLM Log Probabilities

vLLM has two sampling parameters (logprobs and prompt_logprobs) for computing 
log probabilities

logprobs refers to the generated output tokens

prompt_logprobs refers to the input tokens

These parameters are non-negative integers

If the parameter is set to k, then you get the log probabilities of the generated/input 
token, as well as the k most probable options for that token
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vLLM Log Probabilities

“logprobs”: {
   "top_logprobs":[
      {
         "20":-4.005917549133301,
         "49":-1.7559176683425903
      },
      {
         "-minute":-1.359967827796936
      }
   ]
}

logprobs=1
“prompt_logprobs”: [

   {

      "24661":{

         "logprob":-8.533774375915527,

         "rank":284,

         "decoded_token":"San"

      },

      "14924":{

         "logprob":-1.1587743759155273,

         "rank":1,

         "decoded_token":"Question"

      }

   },

]

prompt_logprobs=1
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vLLM Log Probabilities

“logprobs”: {
   "top_logprobs":[
      {
         "20":-4.005917549133301,
         "49":-1.7559176683425903
      },
      {
         "-minute":-1.359967827796936
      }
   ]
}

logprobs=1
“prompt_logprobs”: [

   {

      "24661":{

         "logprob":-8.533774375915527,

         "rank":284,

         "decoded_token":"San"

      },

      "14924":{

         "logprob":-1.1587743759155273,

         "rank":1,

         "decoded_token":"Question"

      }

   },

]

prompt_logprobs=1
“20” is generated,
“49” is most probable
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vLLM Log Probabilities

“logprobs”: {
   "top_logprobs":[
      {
         "20":-4.005917549133301,
         "49":-1.7559176683425903
      },
      {
         "-minute":-1.359967827796936
      }
   ]
}

logprobs=1
“prompt_logprobs”: [

   {

      "24661":{

         "logprob":-8.533774375915527,

         "rank":284,

         "decoded_token":"San"

      },

      "14924":{

         "logprob":-1.1587743759155273,

         "rank":1,

         "decoded_token":"Question"

      }

   },

]

prompt_logprobs=1

“-minute” is most probable and 
generated
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vLLM Log Probabilities

“logprobs”: {
   "top_logprobs":[
      {
         "20":-4.005917549133301,
         "49":-1.7559176683425903
      },
      {
         "-minute":-1.359967827796936
      }
   ]
}

logprobs=1
“prompt_logprobs”: [

   {

      "24661":{

         "logprob":-8.533774375915527,

         "rank":284,

         "decoded_token":"San"

      },

      "14924":{

         "logprob":-1.1587743759155273,

         "rank":1,

         "decoded_token":"Question"

      }

   },

]

prompt_logprobs=1

“San” is the first token in 
the prompt, 
“Question is the most 
probable first token
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Multithreading

Allows sending multiple request to the server in parallel

Performant even when handling prompts with varying completion times

Use a job queue (ThreadPoolExecutor) so that as one request finishes, a new 
one is sent
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Agenda

1 Basics of distributed inference for 
LLMs

2 Using vLLM for Online Inference
Setting up an LLM server
Using the LLM server for
inference

3 Using vLLM for Offline Inference
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Other Models
https://docs.vllm.ai/en/v0.6.2/models/supported_models.html

https://docs.vllm.ai/en/v0.6.2/models/supported_models.html
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Thank you


