

Large Language Model Distributed Training

October 18, 2024

Objectives

By the end of this workshop, you will be able to:

- Outline reasons to train models using more than one GPU.
- Understand different GPU collective communication primitives and their role in each parallel technique.
- Understand different parallelization techniques for distributed LLM training using GPUs.
- Train different transformers using OLMo (AI2 Open Large Language Model) in a distributed fashion on the HPC cluster.

Agenda

Why Going Distributed?

3 Different Distributed LLM Training Techniques

Training a Large LLM on the Cluster

Why Distributed?

Data Size, Model Size or Both?

- Speedup Training
 - Model fits into a single GPU
 - Have a huge dataset to process
 - More GPUs More computing resources
- Train Larger Models
 - We need to divide the model across multiple GPUs to be able to train it.

Decoder-only LLM Architecture

Output probabilities What do 1B, 7B, 70B, ... LLM sizes mean? Softmax • V: vocabulary size Linear B: batch size • LayerNorm D: model dimension • Transfromer Block T: sequence length ٠ XN N: number of transformer blocks • Transfromer N_b: number of attention heads Block • Positional encoding $P = N(12D^2 + 10D) + D(V+T) + 2D + V(D+1)$ Input Embedding **Transformer Block** Embedding Last Norm Logits Input Tokens

Feed Forward

LayerNorm

Linear

Multi-head Attention

Linear

LaverNorm

HARVARD

Required Memory Estimation

Memory Contributors:

- Parameters ۲
- **Optimizer states**
- **Activations** ۲
- Others (Input/Target) ۲

Total Memory Requirement:

$$M = M_{parameters} + M_{optimizer} + M_{activations} + M_{other}$$

M_{parameters} $\mathsf{M}_{\mathsf{optimizer}}$ = 3P $\mathsf{M}_{\mathsf{activations}}$ = $5NBTD + BNN_T^2 + 2BVT + 2BTD$ FF LNs. head attention embed $\mathsf{M}_{\mathsf{other}}$ = 2BT V: vocabulary size B: batch size D: model dimension T: sequence length N: number of transformer blocks N_b: number of attention heads $P = N(12D^2 + 10D) + D(V+T) + 2D + V(D+1)$

HARVARD

Floating-point	Formats
-----------------------	---------

Floating Point Formats

https://www.tensorops.ai/post/what-are-quantized-llms

Required Memory Estimation

Just Loading Weights

- Parameters in bfloat16 (2 Bytes)
- Optimizer in float32 (4 Bytes)

M_{model}= P * 2 + 3P * 4 = 14 P (Bytes)

Exercise: Assessing Memory Needs

One of the OLMo models we will be working with has the hyperparameters shown on the right.

- 1) Compute the number of parameters
- 2) Compute the memory that the model weights will take
- 3) Will this fit on one GPU? If not, how many A100 GPUs would you need? How many H100s?

- V (vocabulary size): 50280
- B (batch size): 256
- D (model dimension): 8192
- T (sequence length): 4096
- N (number of transformer blocks): 80
- $N_{\rm h}$ (number of attention heads): 64

Exercise Solution

P = N(12D²+ 10D) + D(V+T) + 2D + V(D+1) P = 80*(12*8192**2 + 10 *8192) + 8192*(50280 + 4096) + 2*8192 + 50280*(8192+1) P = 65288471656 P = 65 billion

M = 14P = 14*65288471656 M = 910 billion bytes = 910 GB

• V (vocabulary size): 50280

- B (batch size): 256
- D (model dimension): 8192
- T (sequence length): 4096
- N (number of transformer blocks): 80
- N_b(number of attention heads): 64

HARVARD

Required Memory Estimation

Just Loading Weights

- Parameters in bfloat16 (2 Bytes)
- Optimizer in float32 (4 Bytes)

Model Size (P)	Approx. memory used to train model (GB)	
300M	4	GPUs:
1B	14	
7B	98	$H100 \Rightarrow 80 G$ $A100 \Rightarrow 40 G$
13B	182	
70B	980	

Parameter Comparisons

	Vocabulary size (V)	Model dimension (D)	Sequence length (T)	Number of transformer blocks (N)	Number of attention heads (N _h)
OLMo 1B	32100	2046	2048	16	16
OLMo 7B	32100	4096	2048	32	32
OLMo 70B	50280	8192	4096	80	64

OLMo

Open Language Model

- A highly performant, truly open LLM and framework
 - 100% of ingredients are available to public including code, weights, checkpoints, training data and system logs.
 - To advance AI and study language models collectively
 - Decoder-only Architecture

Let's setup and install it on the cluster: <u>https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md</u>

To request Kempner GPUs if you don't have access to Kempner cluster: https://handbook.eng.kempnerinstitute.harvard.edu/s1_high_performance_computing/kempner_cluster/accessing_gpu_by_fasrc_users.html

Agenda

Why Going Distributed?

2 Intro to Distributed GPU Computing

3 Different Distributed LLM Training Techniques

Training a Large LLM on the Cluster

HPC Cluster

In Production (144 x A100 40 GB, 384 x H100 80 GB)

HARVARD

HPC Cluster - Computational Power

Compute Power (H100 GPUs)

- Number of Racks (N_{Rack}) = 4
- Number of Nodes per Rack (N_{Node}) = 24
- Number of GPUs per Node $(N_{GPU}) = 4$
- Total Number of GPUs = N_{Rack} x N_{Node} x N_{GPU} = 384 H100 GPUs
- Total Computational Power in FLOPs,
 - Total FLOPs (BFLOAT16 Tensor Core) = 384 GPU x 1979 TFLOPs / GPU = 759,936 TFLOPs = 759 PFLOPs
 - Total FLOPs (FP32) = 384 GPU x 67 TFLOPs / GPU = 25,728 TFLOPs = 25 PFLOPs

Technical Specifications				
	H100 SXM			
FP64	34 teraFLOPS			
FP64 Tensor Core	67 teraFLOPS			
FP32	67 teraFLOPS			
TF32 Tensor Core*	989 teraFLOPS			
BFLOAT16 Tensor Core*	1,979 teraFLOPS			
FP16 Tensor Core*	1,979 teraFLOPS			
FP8 Tensor Core*	3,958 teraFLOPS			
INT8 Tensor Core*	3,958 TOPS			

GPU-to-GPU Communication

Inside Node (**NVLINK**): Each GPU talks to other three GPUs at 75 GB/s (single direction). This sums up to 900 GB/s all GPU-GPU bidirectional speed. 75 GB/s * 6 * 2 = 900 GB/s

Outside Node (InfiniBand Network NDR): Each GPU communicates to other GPUs in another node at 400 Gbps (50 GB/s).

Inter-GPU Communication

NCCL

NVIDIA Collective Communication Library (NCCL, pronounced "NICKEL") is used as backend in distributed strategies for NVIDIA GPUs

NCCL offers various collective communication primitives

Other NCCL Collective Primitives

Scatter: From one rank data will be distributed across ranks.

Gather: One rank will receive the aggregation of data from all ranks.

All-Gather

All-Gather: Each rank receives the aggregation of data from all ranks in the order of the ranks.

HARVARD

Other NCCL Collective Primitives

Reduce: One rank receives the reduction of input values across ranks.

All-Reduce: Each rank receives the reduction of input values across ranks.

Reduce-Scatter: Input values are reduced across ranks, with each rank receiving a subpart of the result.

Agenda

Why Going Distributed?

3 Different Distributed LLM Training Techniques

Training a Large LLM on the Cluster

Distributed Data Parallel Processing

Most common approach to distributed training in machine learning

Each GPU trains a copy of the model. Dataset is split into different batches of data on each GPU

Shared model

https://www.anyscale.com/blog/what-is-distributed-training

Multi-layer Perceptron

class MLP(nn.Module): def __init__(self, in_feature, hidden_units, out_feature): super().__init__()

self.hidden_layer = nn.Linear(in_feature, hidden_units)
self.output_layer = nn.Linear(hidden_units, out_feature)

```
def forward(self, x):
    x = self.hidden_layer(x)
    x = self.output_layer(x)
    return x
```

$$\begin{array}{c} \mathbf{x}_{i} = \begin{bmatrix} \mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{4} \mathbf{x}_{5} \mathbf{x}_{6} \end{bmatrix} & W_{1} = \begin{bmatrix} \begin{bmatrix} \mathbf{w}_{1} & \mathbf{w}_{2} & \mathbf{w}_{3} & \mathbf{w}_{4} \\ \mathbf{w}_{5} & \mathbf{w}_{6} & \mathbf{w}_{7} & \mathbf{w}_{8} \\ \mathbf{w}_{9} & \mathbf{w}_{10} \mathbf{w}_{11} \mathbf{w}_{12} \\ \mathbf{w}_{13} \mathbf{w}_{14} \mathbf{w}_{15} \mathbf{w}_{16} \\ \mathbf{w}_{17} \mathbf{w}_{18} \mathbf{w}_{19} \mathbf{w}_{20} \\ \mathbf{w}_{21} \mathbf{w}_{22} \mathbf{w}_{23} \mathbf{w}_{24} \end{bmatrix} & W_{2} = \begin{bmatrix} \mathbf{z}_{1} & \mathbf{z}_{2} \\ \mathbf{z}_{3} & \mathbf{z}_{4} \\ \mathbf{z}_{5} & \mathbf{z}_{6} \\ \mathbf{z}_{7} & \mathbf{z}_{8} \end{bmatrix} \\ & \mathbf{b}_{1} = \begin{bmatrix} \mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3} & \mathbf{b}_{4} \end{bmatrix} & \mathbf{b}_{2} = \begin{bmatrix} \mathbf{c}_{1} & \mathbf{c}_{2} \end{bmatrix} \end{array}$$

HARVARD

UNIVERSITY

189) (DO)

Single GPU MLP Training

1) Model gets batch of data

batch

- 2) Computes forward pass
- Computes backward pass (computing gradients)
- 4) Updates weights based on gradients

Kempner

HARVARD

24

Which NCCL Collective Primitive?

Reduce (on rank 1) Rank 0 Rank 1 Rank 2 Rank 3 G₁₀ G₂₀ G₁₁ | G₂₁ G₁₂ G₂₂ G₁₃ | G₂₃ G₃₀ G₄₀ G₃₁ G41 G₃₂ G₄₂ $|G_{33}|G_{43}$ $G_i = \sum_{j=0}^3 G_{ij}$ Rank 1 Rank 0 Rank 2 Rank 3 G_2 G₁ G₃ G4

Reduce-Scatter

1331 EQ 1931

153 EU 199

istributed-mlp/scripts/mlp_ddp.py

131 EQ 1221

Model Parallelism

Data parallelism

Model parallelism

https://www.anyscale.com/blog/what-is-distributed-training

Model Parallelism

class MLP(nn.Module): def __init__(self, in_feature, hidden_units, out_feature): super().__init__()

self.hidden_layer = nn.Linear(in_feature, hidden_units).to(0) self.output_layer = nn.Linear(hidden_units, out_feature).to(1)

```
def forward(self, x):
 x = self.hidden_layer(x.to(0))
 x = self.output_layer(x.to(1))
  return x
```


Model Parallelism and its Drawback

131 EQ 1221

Model Parallelism and its Drawback

133 EQ 1291

Pipeline Parallelism

Pipeline Parallelism uses micro batches to reduce the idle time by adding overlaps

https://medium.com/nerd-for-tech/an-overview-of-pipeline-parallelism-and-its-research-progress-7934e5e6d5b8

133 EQ 1291

Tensor Parallelism

Model/Pipeline Parallelism vs Tensor Parallelism

 All GPUs contribute in each layer computation
 Remove the GPU

 Remove the GPU Idle time

1331 EQ 1939 HARVARD

Tensor Parallelism

Splitting the weights column-wise between GPUs

https://magazine.sebastianraschka.com/p/accelerating-pytorch-model-training

131 EQ 1221 HARVARD

DDP vs FSDP: DDP

Each GPU has a copy of the model

1. Perform forward and backward passes locally

2. All-reduce gradients across GPUs (NCCL operation)

3. Update optimizer states and weights locally

1331 EQ 1931 HARVARD

FSDP vs DDP: Model Size

Figure 1: Comparing the per-device memory consumption of model states, with three stages of ZeRO-DP optimizations. Ψ denotes model size (number of parameters), K denotes the memory multiplier of optimizer states, and N_d denotes DP degree. In the example, we assume a model size of $\Psi = 7.5B$ and DP of $N_d = 64$ with K = 12 based on mixed-precision training with Adam optimizer.

Samyam R. et al, ZeRO: Memory Optimizations Toward Training Trillion Parameter Models. arxiv

DDP vs FSDP: FSDP

Each GPU has a shard of the model - 1D flatten parameters divided between GPUs

Forward:

- 1. All-gather all the weights across GPUs (NCCL operation)
- 2. Perform the forward pass locally
- 3. Release the collected weights to free memory

Backward:

- 4. All-gather all the weights across GPUs (NCCL operation)
- 5. Perform the backward pass locally
- 6. Release the collected weights to free memory

Optimizer step and weight update:

 Reduce-scatter gradients across GPUs (NCCL operation)

> (Each GPUs will only compute their own partial of the gradient)

8. Update optimizer states and weights locally

- FSDP fully shards all Parameters, Gradients and Optimizer states across the GPUs.
- Each All-gather, Forward pass, All-gather, Backward pass, Reduce-scatter, Optimizer and Weights update needs to be done sequentially.
 - No opportunity for overlapping computation and communication
 - Needs sort of dividing the model vertically into multiple subsets (aka units) to make this overlap possible

- All-gathers and perform forward/backward pass is performed unit by unit
 - Helps with memory
 - Loads parameters only for the current unit
 - Needs to have enough memory to load the largest FSDP unit
 - Provide the computation and communication overlap
 - While unit #1 is performing forward pass, unit #2 all-gathers it's parameters

Yanli Z., et al, PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel. arxiv

https://handbook.eng.kempnerinstitute.harvard.edu/s5_ai_scaling_and_engineering/scalability/gpu_computing.html

189) (EQ)

https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_fsdp.pv

153 EU 199

Agenda

Why Going Distributed?

3 Different Distributed LLM Training Techniques

Training a Large LLM on the Cluster

OLMo: 1B - DDP

Distributed Data Parallelism

```
model:
d_model (D): 2048
n_layers (N): 16
n_heads (N<sub>h</sub>): 16
max_sequence_length (T): 2048
vocab_size (V): 32100
```

```
ddp:
grad_sync_mode: batch
find_unused_params: false
distributed_strategy: ddp
```

 $P = N(12D^2 + 10D) + D(V+T) + 2D + V(D+1)$

```
P = 0.944 B
```

https://github.com/KempnerInstitute/OLMo/blob/main/configs/kempner_institute/1b_OImo.yaml

Instruction:

https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md

OLMo: 7B - FSDP

Fully Sharded Data Parallelism

```
model:
d_model (D): 4096
n_layers (N): 32
n_heads (N<sub>h</sub>): 32
max_sequence_length (T): 2048
vocab_size (V): 32100
```

```
fsdp:
wrapping_strategy: by_block
precision: mixed
sharding_strategy: FULL_SHARD
```

distributed_strategy: fsdp

 $P = N(12D^2 + 10D) + D(V+T) + 2D + V(D+1)$

P = 6.715 B

https://github.com/KempnerInstitute/OLMo/blob/main/configs/kempner_institute/7b_OImo.yaml

Instruction:

https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md

Exercise: Try out running OLMo (Steps 1 and 2)

1) Install OLMo if you haven't already

(instructions: <u>http://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md</u>)

2) Look through the config file for 7B FSDP

(Section 2.1: https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md)

Different Wrapping Policy

How to wrap modules into FSDP units

- by_block: put each OLMo block into its own FSDP unit.
- by_block_and_size: same as by_block but `wte` and `ff_out` will be wrapped separately.
- by_block_group: put each m OLMo blocks into its own FSDP unit.
- size_based: uses PyTorch's default size-based auto wrap policy. (Wraps any module above 100M size in its own FSDP unit)

By_block_group / block_group_size = 4

Figure 3: This shows how OLMo's FSDP wrapping policies form the FSDP units.

Different Sharding Strategies

May trades off memory saving and communication overhead

- NO_SHARD: as same as DDP
- FULL_SHARD: Parameters, gradients, and optimizer states are sharded.
- SHARD_GRAD_OP: Gradients and optimizer states are sharded during computation, and additionally, parameters are sharded outside computation meaning it keeps parameters unshareded throughout the forward and backward computation.
- HYBRID_SHARD: Apply ``FULL_SHARD`` within a node, and replicate parameters across nodes. This results in reduced communication volume as expensive all-gathers and reduce-scatters are only done within a node, which can be more performant for medium-sized models.

Exercise: Try out running OLMo (Steps 3 and 4)

3) Update the <u>SLURM script</u>. Pair up and run OLMo with FSDP! Check out the output logs

• You can use tail -f <path-to-output-file> to monitor the logs.

4) Try out different wrapping policies and sharding strategies.

Thank you