
October 18, 2024

Large Language Model
Distributed Training

22

Objectives
By the end of this workshop, you will be able to:

● Outline reasons to train models using more than one GPU.
● Understand different GPU collective communication primitives and their

role in each parallel technique.
● Understand different parallelization techniques for distributed LLM

training using GPUs.
● Train different transformers using OLMo (AI2 Open Large Language

Model) in a distributed fashion on the HPC cluster.

33

Agenda

1 Why Going Distributed?

2 Intro to Distributed GPU Computing

3 Different Distributed LLM Training
Techniques

4 Training a Large LLM on the Cluster

4

Why Distributed?

• Speedup Training
• Model fits into a single GPU
• Have a huge dataset to process
• More GPUs - More computing resources

• Train Larger Models
• We need to divide the model across multiple GPUs to be able to

train it.

Data Size, Model Size or Both?

5

Decoder-only LLM Architecture

P = N(12D2+ 10D) + D(V+T) + 2D + V(D+1)

Transformer Block Embedding Last Norm Logits

What do 1B, 7B, 70B, … LLM sizes mean?
• V: vocabulary size
• B: batch size
• D: model dimension
• T: sequence length
• N: number of transformer blocks
• Nh: number of attention heads

6

Required Memory Estimation

• Parameters

• Optimizer states

• Activations

• Others (Input/Target)

Memory Contributors:

Mparameters = P

M = Mparameters + Moptimizer + Mactivations + Mother

Mother = 2BT

Mactivations = 5NBTD + BNNhT
2 + 2BVT + 2BTD

Moptimizer = 3P

FF attention embed LNs, head

• V: vocabulary size
• B: batch size
• D: model dimension
• T: sequence length
• N: number of transformer blocks
• Nh: number of attention heads

 P = N(12D2+ 10D) + D(V+T) + 2D + V(D+1)

Total Memory Requirement:

7

https://www.tensorops.ai/post/what-are-quantized-llms

Floating-point Formats

https://www.tensorops.ai/post/what-are-quantized-llms

8

Required Memory Estimation

• Parameters in bfloat16 (2 Bytes)

• Optimizer in float32 (4 Bytes)

Just Loading Weights

Mmodel= P * 2 + 3P * 4 = 14 P
(Bytes)

GPUs:

H100 ⇒ 80 G
A100 ⇒ 40 G

9

Exercise: Assessing Memory Needs
• V (vocabulary size): 50280
• B (batch size): 256
• D (model dimension): 8192
• T (sequence length): 4096
• N (number of transformer blocks): 80
• Nh(number of attention heads): 64

One of the OLMo models we will be working with has the
hyperparameters shown on the right.

1) Compute the number of parameters
2) Compute the memory that the model weights will take
3) Will this fit on one GPU? If not, how many A100 GPUs

would you need? How many H100s? GPUs:

H100 ⇒ 80 G
A100 ⇒ 40 G

10

Exercise Solution
• V (vocabulary size): 50280
• B (batch size): 256
• D (model dimension): 8192
• T (sequence length): 4096
• N (number of transformer blocks): 80
• Nh(number of attention heads): 64

GPUs:

H100 ⇒ 80 G
A100 ⇒ 40 G

P = N(12D2+ 10D) + D(V+T) + 2D + V(D+1)
P = 80*(12*8192**2 + 10 *8192) +
8192*(50280 + 4096) + 2*8192 +
50280*(8192+1)
P = 65288471656
P = 65 billion

M = 14P = 14*65288471656
M = 910 billion bytes = 910 GB

11

Required Memory Estimation

• Parameters in bfloat16 (2 Bytes)

• Optimizer in float32 (4 Bytes)

Just Loading Weights

Model Size (P) Approx. memory used to train model (GB)

300M 4

1B 14

7B 98

13B 182

70B 980

Mmodel= P * 2 + 3P * 4 = 14 P
(Bytes)

GPUs:

H100 ⇒ 80 G
A100 ⇒ 40 G

12

Parameter Comparisons

Vocabulary
size (V)

Model
dimension

(D)

Sequence
length (T)

Number of
transformer
blocks (N)

Number of
attention

heads (Nh)

OLMo 1B 32100 2046 2048 16 16

OLMo 7B 32100 4096 2048 32 32

OLMo 70B 50280 8192 4096 80 64

13

OLMo

• A highly performant, truly open LLM and framework
• 100% of ingredients are available to public including code, weights,

checkpoints, training data and system logs.
• To advance AI and study language models collectively
• Decoder-only Architecture

Open Language Model

Let’s setup and install it on the cluster:
https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md

To request Kempner GPUs if you don’t have access to Kempner cluster:
https://handbook.eng.kempnerinstitute.harvard.edu/s1_high_performance_computing/kempner_cluster/accessing_gpu_by_fasrc_users.html

https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md
https://handbook.eng.kempnerinstitute.harvard.edu/s1_high_performance_computing/kempner_cluster/accessing_gpu_by_fasrc_users.html

1414

Agenda

1 Why Going Distributed?

2 Intro to Distributed GPU Computing

3 Different Distributed LLM Training
Techniques

4 Training a Large LLM on the Cluster

15

HPC Cluster

16

HPC Cluster - Computational Power

• Number of Racks (NRack) = 4

• Number of Nodes per Rack (NNode) = 24

• Number of GPUs per Node (NGPU) = 4

• Total Number of GPUs = NRack x NNode x NGPU = 384 H100 GPUs

• Total Computational Power in FLOPs,

• Total FLOPs (BFLOAT16 Tensor Core) = 384 GPU x 1979 TFLOPs / GPU = 759,936
TFLOPs = 759 PFLOPs

• Total FLOPs (FP32) = 384 GPU x 67 TFLOPs / GPU = 25,728 TFLOPs = 25 PFLOPs

Compute Power (H100 GPUs)

17

GPU 1

GPU 3

GPU 2

GPU 4

75 GB/s
GPU 1

GPU 3

GPU 2

GPU 4

75 GB/s

Inside Node (NVLINK): Each GPU talks to other three GPUs at 75 GB/s (single direction). This sums up to 900 GB/s all
GPU-GPU bidirectional speed. 75 GB/s * 6 * 2 = 900 GB/s

50 GB/s

50 GB/s
Outside Node (InfiniBand Network NDR): Each GPU communicates to other GPUs in another node at 400 Gbps (50 GB/s).

400 Gbps600 Gbps 600 Gbps

400 Gbps

75 GB/s
600 Gbps

75 G
B

/s
600 G

bps

75 GB/s
600 Gbps75

 G
B

/s
60

0
G

bp
s

GPU-to-GPU Communication
Node 1 Node 2

18

Inter-GPU Communication

NVIDIA Collective Communication Library (NCCL,
pronounced “NICKEL”) is used as backend in distributed
strategies for NVIDIA GPUs

NCCL offers various collective communication primitives

NCCL

19

Other NCCL Collective Primitives

Scatter: From one rank
data will be distributed

across ranks.

Gather: One rank will
receive the aggregation
of data from all ranks.

All-Gather: Each rank
receives the aggregation
of data from all ranks in
the order of the ranks.

20

Other NCCL Collective Primitives

Reduce: One rank
receives the reduction of

input values across
ranks.

All-Reduce: Each rank
receives the reduction of

input values across
ranks.

Reduce-Scatter: Input
values are reduced

across ranks, with each
rank receiving a subpart

of the result.

2121

Agenda

1 Why Going Distributed?

2 Intro to Distributed GPU Computing

3 Different Distributed LLM Training
Techniques

Training a Large LLM on the Cluster 4

22

Distributed Data Parallel Processing

Most common approach to distributed
training in machine learning

Each GPU trains a copy of the model.
Dataset is split into different batches of
data on each GPU

https://www.anyscale.com/blog/what-is-distributed-training

23

Multi-layer Perceptron

24

Single GPU
MLP Training

Layer 1

Layer 2

Layer 3

GPU

1) Model gets batch of data

2) Computes forward pass

3) Computes backward
 pass (computing gradients)

4) Updates weights based
 on gradients

Timeline

L1

L2

L3

L3

L2

L1

Update
weights

25

Layer 1

Layer 2

Layer 3

GPU 0

L1

L2

L3

L3

L2

L1

Update
weights

Layer 1

Layer 2

Layer 3

GPU 1

b0 b
1L1

L2

L3

L3

L2

L1

Update
weights

At what point
should there be
communication

between the
GPUs? What

should the
communication

be?

26

Layer 1

Layer 2

Layer 3

GPU 0

L1

L2

L3

L3

L2

L1

Update
weights

Layer 1

Layer 2

Layer 3

GPU 1

b0 b
1

L3 L3

L2 L2

L1 L1

Average local
gradients before

updating weights to
get global gradients

L1

L2

L3

L3

L2

L1

Update
weights

27

Which NCCL Collective Primitive?

28

Try it out:
https://github.com/KempnerInstitute/examples/blob/main/d
istributed-mlp/scripts/mlp_ddp.py

https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_ddp.py
https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_ddp.py

29

Try it out:
https://github.com/KempnerInstitute/examples/blob/main/d
istributed-mlp/scripts/mlp_ddp.py

● Will this form of parallelism help
fix the issue if our model does not
fit onto one GPU?

● If not, what approach could we
take instead?

https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_ddp.py
https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_ddp.py

30

Model Parallelism

https://www.anyscale.com/blog/what-is-distributed-training

31

Model Parallelism

32

Model Parallelism and its Drawback

Try it out:
https://github.com/KempnerInstitute/examples/blob/main/d
istributed-mlp/scripts/mlp_model_parallel.py

https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_model_parallel.py
https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_model_parallel.py

33

Model Parallelism and its Drawback

Try it out:
https://github.com/KempnerInstitute/examples/blob/main/d
istributed-mlp/scripts/mlp_model_parallel.py

How could we fix or mitigate this GPU
idle time?

https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_model_parallel.py
https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_model_parallel.py

34

Pipeline Parallelism
Pipeline Parallelism uses micro batches to reduce the idle time by adding overlaps

https://medium.com/nerd-for-tech/an-overview-of-pipeline-parallelism-and-its-research-progress-7934e5e6d5b8

35

Tensor Parallelism
Model/Pipeline Parallelism vs Tensor Parallelism

● All GPUs
contribute in each
layer computation

● Remove the GPU
Idle time

36

Tensor Parallelism

Splitting the weights column-wise between GPUs

https://magazine.sebastianraschka.com/p/accelerating-pytorch-model-training

37

Try it out:
https://github.com/KempnerInstitute/examples/blob/main/d
istributed-mlp/scripts/mlp_tensor_parallel.py
More insight into what happens behind the scene:
https://github.com/KempnerInstitute/examples/blob/main/d
istributed-mlp/notebooks/tensor_parallelism_insight.ipynb

https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_tensor_parallel.py
https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_tensor_parallel.py
https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/notebooks/tensor_parallelism_insight.ipynb
https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/notebooks/tensor_parallelism_insight.ipynb

38

DDP vs FSDP: DDP

1. Perform forward and backward passes
locally

2. All-reduce gradients across GPUs
(NCCL operation)

3. Update optimizer states and weights
locally

Each GPU has a copy of the model

39

FSDP vs DDP: Model Size

Samyam R. et al, ZeRO: Memory Optimizations Toward Training Trillion Parameter Models. arxiv

DDP

FSDP

https://arxiv.org/pdf/1910.02054

40

DDP vs FSDP: FSDP

Forward:

1. All-gather all the weights across GPUs (NCCL
operation)

2. Perform the forward pass locally
3. Release the collected weights to free memory

Each GPU has a shard of the model - 1D flatten parameters divided between GPUs

Optimizer step and weight update:

7. Reduce-scatter gradients across GPUs
(NCCL operation)

(Each GPUs will only compute
their own partial of the gradient)

8. Update optimizer states and weights
locally

Backward:

4. All-gather all the weights across GPUs (NCCL
operation)

5. Perform the backward pass locally
6. Release the collected weights to free memory

41

FSDP: Overlap Computation and Communication

wte in_femb_drop ff_last Compute
Loss

Block
#1

Block
#k

Block
#n

Transformer

Batch
of Data

GPU 1

GPU 2

GPU 3

GPU 4

● FSDP fully shards all Parameters, Gradients and Optimizer states across the GPUs.

● Each All-gather, Forward pass, All-gather, Backward pass, Reduce-scatter, Optimizer and
Weights update needs to be done sequentially.

○ No opportunity for overlapping computation and communication
○ Needs sort of dividing the model vertically into multiple subsets (aka units)

to make this overlap possible

42

FSDP: Overlap Computation and Communication

● All-gathers and perform forward/backward pass is performed unit by unit
○ Helps with memory

■ Loads parameters only for the current unit
■ Needs to have enough memory to load the largest FSDP unit

○ Provide the computation and communication overlap
■ While unit #1 is performing forward pass, unit #2 all-gathers it’s parameters

wte in_femb_drop ff_last Compute
Loss

Block
#1

Block
#k

Block
#n

Transformer

Batch
of Data

FSDP Unit #0

FSDP Unit #kFSDP Unit #1 FSDP Unit #n

FSDP: Overlap Computation and Communication

Yanli Z., et al, PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel. arxiv

https://arxiv.org/pdf/2304.11277

44

FSDP: Overlap Computation and Communication

https://handbook.eng.kempnerinstitute.harvard.edu/s5_ai_scaling_and_engineering/scalability/gpu_computing.html

https://handbook.eng.kempnerinstitute.harvard.edu/s5_ai_scaling_and_engineering/scalability/gpu_computing.html

45

Try it out:
https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_fsdp.py

https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_fsdp.py

4646

Agenda

1 Why Going Distributed?

2 Intro to Distributed GPU Computing

3 Different Distributed LLM Training
Techniques

4 Training a Large LLM on the Cluster

47

OLMo: 1B - DDP

https://github.com/KempnerInstitute/OLMo/blob/main/configs/kempner_institute/1b_Olmo.yaml

model:
 d_model (D): 2048
 n_layers (N): 16
 n_heads (Nh): 16
 max_sequence_length (T): 2048
 vocab_size (V): 32100

P = N(12D2+ 10D) + D(V+T) + 2D + V(D+1) P = 0.944 B

ddp:
 grad_sync_mode: batch
 find_unused_params: false

distributed_strategy: ddp

Distributed Data Parallelism

Instruction:
https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md

https://github.com/KempnerInstitute/OLMo/blob/main/configs/kempner_institute/1b_Olmo.yaml
https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md

48

OLMo: 7B - FSDP
Fully Sharded Data Parallelism

https://github.com/KempnerInstitute/OLMo/blob/main/configs/kempner_institute/7b_Olmo.yaml

model:
 d_model (D): 4096
 n_layers (N): 32
 n_heads (Nh): 32
 max_sequence_length (T): 2048
 vocab_size (V): 32100

P = N(12D2+ 10D) + D(V+T) + 2D + V(D+1) P = 6.715 B

fsdp:
 wrapping_strategy: by_block
 precision: mixed
 sharding_strategy: FULL_SHARD

distributed_strategy: fsdp

Instruction:
https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md

https://github.com/KempnerInstitute/OLMo/blob/main/configs/kempner_institute/7b_Olmo.yaml
https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md

49

Exercise: Try out running OLMo (Steps 1 and 2)

1) Install OLMo if you haven’t already
(instructions: http://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md)

2) Look through the config file for 7B FSDP
(Section 2.1: https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md)

http://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md
https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md

50

Different Wrapping Policy

● by_block: put each OLMo block into its own FSDP unit.

● by_block_and_size: same as by_block but `wte` and `ff_out` will be
wrapped separately.

● by_block_group: put each m OLMo blocks into its own FSDP unit.

● size_based: uses PyTorch’s default size-based auto wrap policy. (Wraps any
module above 100M size in its own FSDP unit)

How to wrap modules into FSDP units

52

Different Sharding Strategies

• NO_SHARD: as same as DDP

• FULL_SHARD: Parameters, gradients, and optimizer states are sharded.

• SHARD_GRAD_OP: Gradients and optimizer states are sharded during computation, and additionally,
parameters are sharded outside computation meaning it keeps parameters unshareded throughout the
forward and backward computation.

• HYBRID_SHARD: Apply ``FULL_SHARD`` within a node, and replicate parameters across nodes. This
results in reduced communication volume as expensive all-gathers and reduce-scatters are only done
within a node, which can be more performant for medium-sized models.

May trades off memory saving and communication overhead

53

Exercise: Try out running OLMo (Steps 3 and 4)

3) Update the SLURM script. Pair up and run OLMo with FSDP! Check out
the output logs
● You can use tail -f <path-to-output-file> to monitor the logs.

4) Try out different wrapping policies and sharding strategies.

https://github.com/KempnerInstitute/OLMo/blob/main/scripts/kempner_institute/submit_srun.sh

54

Thank you

