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Objectives
By the end of this workshop, you will be able to:

● Outline reasons to train models using more than one GPU.
● Understand different GPU collective communication primitives and their 

role in each parallel technique.
● Understand different parallelization techniques for distributed LLM 

training using GPUs.
● Train different transformers using OLMo (AI2 Open Large Language 

Model) in a distributed fashion on the HPC cluster.
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Agenda

1 Why Going Distributed?

2 Intro to Distributed GPU Computing

3 Different Distributed LLM Training 
Techniques

4 Training a Large LLM on the Cluster 
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Why Distributed?

• Speedup Training
• Model fits into a single GPU
• Have a huge dataset to process
• More GPUs - More computing resources

• Train Larger Models
• We need to divide the model across multiple GPUs to be able to 

train it.

Data Size, Model Size or Both?
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Decoder-only LLM Architecture

P = N(12D2+ 10D) + D(V+T) + 2D + V(D+1)

Transformer Block Embedding Last Norm Logits

What do 1B, 7B, 70B, … LLM sizes mean?
• V: vocabulary size
• B: batch size
• D: model dimension
• T: sequence length
• N: number of transformer blocks
• Nh: number of attention heads 
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Required Memory Estimation

• Parameters

• Optimizer states

• Activations

• Others (Input/Target) 

Memory Contributors:

Mparameters = P

M = Mparameters + Moptimizer + Mactivations + Mother

Mother           = 2BT

Mactivations  = 5NBTD + BNNhT
2 + 2BVT + 2BTD

Moptimizer   = 3P

FF attention embed LNs, head

• V: vocabulary size
• B: batch size
• D: model dimension
• T: sequence length
• N: number of transformer blocks
• Nh: number of attention heads

  P = N(12D2+ 10D) + D(V+T) + 2D + V(D+1)

Total Memory Requirement:
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https://www.tensorops.ai/post/what-are-quantized-llms

Floating-point Formats

https://www.tensorops.ai/post/what-are-quantized-llms
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Required Memory Estimation

• Parameters in bfloat16 (2 Bytes)

• Optimizer in float32 (4 Bytes)

Just Loading Weights

Mmodel= P * 2 + 3P * 4 = 14 P 
(Bytes)

GPUs:

H100 ⇒ 80 G
A100 ⇒ 40 G
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Exercise: Assessing Memory Needs
• V (vocabulary size): 50280
• B (batch size): 256
• D (model dimension): 8192
• T (sequence length): 4096
• N (number of transformer blocks): 80
• Nh(number of attention heads): 64

One of the OLMo models we will be working with has the 
hyperparameters shown on the right.

1) Compute the number of parameters
2) Compute the memory that the model weights will take
3) Will this fit on one GPU? If not, how many A100 GPUs 

would you need? How many H100s? GPUs:

H100 ⇒ 80 G
A100 ⇒ 40 G
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Exercise Solution
• V (vocabulary size): 50280
• B (batch size): 256
• D (model dimension): 8192
• T (sequence length): 4096
• N (number of transformer blocks): 80
• Nh(number of attention heads): 64

GPUs:

H100 ⇒ 80 G
A100 ⇒ 40 G

P = N(12D2+ 10D) + D(V+T) + 2D + V(D+1)
P = 80*(12*8192**2 + 10 *8192) + 
8192*(50280 + 4096) + 2*8192 + 
50280*(8192+1)
P = 65288471656
P = 65 billion

M = 14P = 14*65288471656
M = 910 billion bytes = 910 GB
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Required Memory Estimation

• Parameters in bfloat16 (2 Bytes)

• Optimizer in float32 (4 Bytes)

Just Loading Weights

Model Size (P) Approx. memory used to train model (GB)

300M 4

1B 14

7B 98

13B 182

70B 980

Mmodel= P * 2 + 3P * 4 = 14 P 
(Bytes)

GPUs:

H100 ⇒ 80 G
A100 ⇒ 40 G
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Parameter Comparisons

Vocabulary 
size (V)

Model 
dimension 

(D)

Sequence 
length (T)

Number of 
transformer 
blocks (N)

Number of 
attention 

heads (Nh)

OLMo 1B 32100 2046 2048 16 16

OLMo 7B 32100 4096 2048 32 32

OLMo 70B 50280 8192 4096 80 64
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OLMo

• A highly performant, truly open LLM and framework
• 100% of ingredients are available to public including code, weights, 

checkpoints, training data and system logs.
• To advance AI and study language models collectively
• Decoder-only Architecture

Open Language Model

Let’s setup and install it on the cluster:
https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md

To request Kempner GPUs if you don’t have access to Kempner cluster: 
https://handbook.eng.kempnerinstitute.harvard.edu/s1_high_performance_computing/kempner_cluster/accessing_gpu_by_fasrc_users.html

https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md
https://handbook.eng.kempnerinstitute.harvard.edu/s1_high_performance_computing/kempner_cluster/accessing_gpu_by_fasrc_users.html
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Agenda

1 Why Going Distributed?

2 Intro to Distributed GPU Computing

3 Different Distributed LLM Training 
Techniques

4 Training a Large LLM on the Cluster 
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HPC Cluster
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HPC Cluster - Computational Power

• Number of Racks (NRack) = 4

• Number of Nodes per Rack (NNode) = 24

• Number of GPUs per Node (NGPU) = 4

• Total Number of GPUs = NRack x NNode x NGPU = 384 H100 GPUs

• Total Computational Power in FLOPs,

• Total FLOPs (BFLOAT16 Tensor Core) = 384 GPU x 1979 TFLOPs / GPU = 759,936 
TFLOPs = 759 PFLOPs

• Total FLOPs (FP32) = 384 GPU x 67 TFLOPs / GPU = 25,728 TFLOPs = 25 PFLOPs

Compute Power (H100 GPUs)
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GPU 1

GPU 3

GPU 2

GPU 4

75 GB/s
GPU 1

GPU 3

GPU 2

GPU 4

75 GB/s

Inside Node (NVLINK):  Each GPU talks to other three GPUs at 75 GB/s (single direction). This sums up to 900 GB/s all 
GPU-GPU bidirectional speed. 75 GB/s * 6 * 2 = 900 GB/s

50 GB/s

50 GB/s
Outside Node (InfiniBand Network NDR): Each GPU communicates to other GPUs in another node at 400 Gbps (50 GB/s).

400 Gbps600 Gbps 600 Gbps

400 Gbps

75 GB/s
600 Gbps

75 G
B

/s
600 G

bps

75 GB/s
600 Gbps75

 G
B

/s
60

0 
G

bp
s

GPU-to-GPU Communication
Node 1                                                                                     Node 2
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Inter-GPU Communication

NVIDIA Collective Communication Library (NCCL, 
pronounced “NICKEL”) is used as backend in distributed 
strategies for NVIDIA GPUs

NCCL offers various collective communication primitives

NCCL
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Other NCCL Collective Primitives

Scatter: From one rank 
data will be distributed 

across ranks.

Gather: One rank will 
receive the aggregation 
of data from all ranks.

All-Gather: Each rank 
receives the aggregation 
of data from all ranks in 
the order of the ranks.
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Other NCCL Collective Primitives

Reduce: One rank 
receives the reduction of 

input values across 
ranks.

All-Reduce: Each rank 
receives the reduction of 

input values across 
ranks.

Reduce-Scatter: Input 
values are reduced 

across ranks, with each 
rank receiving a subpart 

of the result.
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Agenda

1 Why Going Distributed?

2 Intro to Distributed GPU Computing

3 Different Distributed LLM Training 
Techniques

Training a Large LLM on the Cluster 4
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Distributed Data Parallel Processing

Most common approach to distributed 
training in machine learning

Each GPU trains a copy of the model. 
Dataset is split into different batches of 
data on each GPU

https://www.anyscale.com/blog/what-is-distributed-training
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Multi-layer Perceptron
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Single GPU 
MLP Training

Layer 1

Layer 2

Layer 3

GPU 

1) Model gets batch of data

2)  Computes forward pass

3)  Computes backward 
     pass (computing gradients)

4)  Updates weights based 
 on gradients

Timeline

L1

L2

L3

L3

L2

L1

Update 
weights
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Layer 1

Layer 2

Layer 3

GPU 0 

L1

L2

L3

L3

L2

L1

Update 
weights

Layer 1

Layer 2

Layer 3

GPU 1

b0 b
1L1

L2

L3

L3

L2

L1

Update 
weights

At what point 
should there be 
communication 

between the 
GPUs? What 

should the 
communication 

be?
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Layer 1

Layer 2

Layer 3

GPU 0 

L1

L2

L3

L3

L2

L1

Update 
weights

Layer 1

Layer 2

Layer 3

GPU 1

b0 b
1

L3 L3

L2 L2

L1 L1

Average local 
gradients before 

updating weights to 
get global gradients 

L1

L2

L3

L3

L2

L1

Update 
weights
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Which NCCL Collective Primitive?
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Try it out: 
https://github.com/KempnerInstitute/examples/blob/main/d
istributed-mlp/scripts/mlp_ddp.py

https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_ddp.py
https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_ddp.py
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Try it out: 
https://github.com/KempnerInstitute/examples/blob/main/d
istributed-mlp/scripts/mlp_ddp.py

● Will this form of parallelism help 
fix the issue if our model does not 
fit onto one GPU?

● If not, what approach could we 
take instead?

https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_ddp.py
https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_ddp.py
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Model Parallelism

https://www.anyscale.com/blog/what-is-distributed-training
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Model Parallelism



32

Model Parallelism and its Drawback

Try it out: 
https://github.com/KempnerInstitute/examples/blob/main/d
istributed-mlp/scripts/mlp_model_parallel.py

https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_model_parallel.py
https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_model_parallel.py
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Model Parallelism and its Drawback

Try it out: 
https://github.com/KempnerInstitute/examples/blob/main/d
istributed-mlp/scripts/mlp_model_parallel.py

How could we fix or mitigate this GPU 
idle time? 

https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_model_parallel.py
https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_model_parallel.py
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Pipeline Parallelism
Pipeline Parallelism uses micro batches to reduce the idle time by adding overlaps

https://medium.com/nerd-for-tech/an-overview-of-pipeline-parallelism-and-its-research-progress-7934e5e6d5b8
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Tensor Parallelism
Model/Pipeline Parallelism vs Tensor Parallelism

● All GPUs 
contribute in each 
layer computation

● Remove the GPU 
Idle time



36

Tensor Parallelism

Splitting the weights column-wise between GPUs

https://magazine.sebastianraschka.com/p/accelerating-pytorch-model-training
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Try it out: 
https://github.com/KempnerInstitute/examples/blob/main/d
istributed-mlp/scripts/mlp_tensor_parallel.py
More insight into what happens behind the scene:
https://github.com/KempnerInstitute/examples/blob/main/d
istributed-mlp/notebooks/tensor_parallelism_insight.ipynb

https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_tensor_parallel.py
https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_tensor_parallel.py
https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/notebooks/tensor_parallelism_insight.ipynb
https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/notebooks/tensor_parallelism_insight.ipynb
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DDP vs FSDP: DDP

1. Perform forward and backward passes 
locally

2. All-reduce gradients across GPUs 
(NCCL operation)

3. Update optimizer states and weights 
locally 

Each GPU has a copy of the model
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FSDP vs DDP: Model Size

Samyam R. et al, ZeRO: Memory Optimizations Toward Training Trillion Parameter Models. arxiv 

DDP

FSDP

https://arxiv.org/pdf/1910.02054
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DDP vs FSDP: FSDP

Forward:

1. All-gather all the weights across GPUs (NCCL 
operation)

2. Perform the forward pass locally
3. Release the collected weights to free memory

Each GPU has a shard of the model - 1D flatten parameters divided between GPUs

Optimizer step and weight update:

7. Reduce-scatter gradients across GPUs 
(NCCL operation)

(Each GPUs will only compute 
their own partial of the gradient)

8. Update optimizer states and weights 
locally

Backward:

4. All-gather all the weights across GPUs (NCCL 
operation)

5. Perform the backward pass locally
6. Release the collected weights to free memory
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FSDP: Overlap Computation and Communication

wte in_femb_drop ff_last Compute 
Loss

Block 
#1

Block 
#k

Block 
#n

Transformer

Batch 
of Data

GPU 1

GPU 2

GPU 3

GPU 4

● FSDP fully shards all Parameters, Gradients and Optimizer states across the GPUs.

● Each All-gather, Forward pass, All-gather, Backward pass, Reduce-scatter, Optimizer and 
Weights update needs to be done sequentially.

○ No opportunity for overlapping computation and communication
○ Needs sort of dividing the model vertically into multiple subsets (aka units) 

to make this overlap possible
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FSDP: Overlap Computation and Communication

● All-gathers and perform forward/backward pass is performed unit by unit
○ Helps with memory

■ Loads parameters only for the current unit
■ Needs to have enough memory to load the largest FSDP unit

○ Provide the computation and communication overlap
■ While unit #1 is performing forward pass, unit #2 all-gathers it’s parameters

wte in_femb_drop ff_last Compute 
Loss

Block 
#1

Block 
#k

Block 
#n

Transformer

Batch 
of Data

FSDP Unit #0

FSDP Unit #kFSDP Unit #1 FSDP Unit #n



FSDP: Overlap Computation and Communication

Yanli Z., et al, PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel. arxiv 

https://arxiv.org/pdf/2304.11277
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FSDP: Overlap Computation and Communication

https://handbook.eng.kempnerinstitute.harvard.edu/s5_ai_scaling_and_engineering/scalability/gpu_computing.html

https://handbook.eng.kempnerinstitute.harvard.edu/s5_ai_scaling_and_engineering/scalability/gpu_computing.html
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Try it out: 
https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_fsdp.py

https://github.com/KempnerInstitute/examples/blob/main/distributed-mlp/scripts/mlp_fsdp.py
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4 Training a Large LLM on the Cluster 
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OLMo: 1B - DDP

https://github.com/KempnerInstitute/OLMo/blob/main/configs/kempner_institute/1b_Olmo.yaml

model:
  d_model (D): 2048
  n_layers (N): 16
  n_heads (Nh): 16
  max_sequence_length (T): 2048
  vocab_size (V): 32100

P = N(12D2+ 10D) + D(V+T) + 2D + V(D+1) P = 0.944 B

ddp:
  grad_sync_mode: batch
  find_unused_params: false

distributed_strategy: ddp

Distributed Data Parallelism

Instruction: 
https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md

https://github.com/KempnerInstitute/OLMo/blob/main/configs/kempner_institute/1b_Olmo.yaml
https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md
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OLMo: 7B - FSDP
Fully Sharded Data Parallelism

https://github.com/KempnerInstitute/OLMo/blob/main/configs/kempner_institute/7b_Olmo.yaml

model:
  d_model (D): 4096
  n_layers (N): 32
  n_heads (Nh): 32
  max_sequence_length (T): 2048
  vocab_size (V): 32100

P = N(12D2+ 10D) + D(V+T) + 2D + V(D+1) P = 6.715 B

fsdp:
  wrapping_strategy: by_block
  precision: mixed
  sharding_strategy: FULL_SHARD

distributed_strategy: fsdp

Instruction: 
https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md

https://github.com/KempnerInstitute/OLMo/blob/main/configs/kempner_institute/7b_Olmo.yaml
https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md
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Exercise: Try out running OLMo (Steps 1 and 2)

1) Install OLMo if you haven’t already 
(instructions: http://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md)

2) Look through the config file for 7B FSDP 
(Section 2.1: https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md)

http://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md
https://github.com/KempnerInstitute/OLMo/blob/main/README_KempnerInstitute.md
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Different Wrapping Policy

● by_block: put each OLMo block into its own FSDP unit. 

● by_block_and_size: same as by_block but `wte` and `ff_out` will be 
wrapped separately.

● by_block_group: put each m OLMo blocks into its own FSDP unit.
 

● size_based: uses PyTorch’s default size-based auto wrap policy. (Wraps any 
module above 100M size in its own FSDP unit)

How to wrap modules into FSDP units 
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Different Sharding Strategies

• NO_SHARD: as same as DDP

• FULL_SHARD: Parameters, gradients, and optimizer states are sharded. 

• SHARD_GRAD_OP: Gradients and optimizer states are sharded during computation, and additionally, 
parameters are sharded outside computation meaning it keeps parameters unshareded throughout the 
forward and backward computation.

• HYBRID_SHARD: Apply ``FULL_SHARD`` within a node, and replicate parameters across nodes. This 
results in reduced communication volume as expensive all-gathers and reduce-scatters are only done 
within a node, which can be more performant for medium-sized models.

May trades off memory saving and communication overhead
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Exercise: Try out running OLMo (Steps 3 and 4)

3) Update the SLURM script. Pair up and run OLMo with FSDP! Check out 
the output logs
● You can use tail -f <path-to-output-file> to monitor the logs.

4) Try out different wrapping policies and sharding strategies. 

https://github.com/KempnerInstitute/OLMo/blob/main/scripts/kempner_institute/submit_srun.sh


54

Thank you


